
-
Previous Article
The vanishing viscosity limit for a system of H-J equations related to a debt management problem
- DCDS-S Home
- This Issue
-
Next Article
Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations
Radial transonic shock solutions of Euler-Poisson system in convergent nozzles
1. | Department of Mathematics, POSTECH, Pohang Gyungbuk, 37673, Republic of Korea |
2. | Korea Institute for Advanced Study 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea |
Given constant data of density $ρ_0$, velocity $-u_0{\bf e}_r$, pressure $p_0$ and electric force $-E_0{\bf e}_r$ for supersonic flow at the entrance, and constant pressure $p_{\rm ex}$ for subsonic flow at the exit, we prove that Euler-Poisson system admits a unique transonic shock solution in a two dimensional convergent nozzle, provided that $u_0>0$, $E_0>0$, and that $E_0$ is sufficiently large depending on $(ρ_0, u_0, p_0)$ and the length of the nozzle.
References:
[1] |
M. Bae and M. Feldman,
Transonic shocks in multidimensional divergent nozzles, Arch. Ration. Mech. Anal., 201 (2011), 777-840.
doi: 10.1007/s00205-011-0424-0. |
[2] |
P. Degond and P. A. Markowich,
On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett., 3 (1990), 25-29.
doi: 10.1016/0893-9659(90)90130-4. |
[3] |
I. M. Gamba,
Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Commun. Partial Differ. Equ., 17 (1992), 553-577.
doi: 10.1080/03605309208820853. |
[4] |
M. W. Hirsch, S. Smale and R. L. Devney, Differential Equations, Dynamical Systems and An introduction to Chaos, 2nd edn., Elsevier, USA, 2004. |
[5] |
T.-P. Liu,
Nonlinear stability and instability of tranosnic gas flow through a nozzle, Commun. Math. Phys., 83 (1982), 243-260.
doi: 10.1007/BF01976043. |
[6] |
T. Luo, J. Rauch, C. Xie and Z. Xin,
Stability of transonic shock solutions for one-dimensional euler-poisson equations, Arch. Ration. Mech. Anal., 202 (2011), 787-827.
doi: 10.1007/s00205-011-0433-z. |
[7] |
T. Luo and Z. Xin,
Transonic shock solutions for a system of Euler-Poisson equations, Commun. Math. Sci., 10 (2012), 419-462.
doi: 10.4310/CMS.2012.v10.n2.a1. |
[8] |
H. R. Yuan,
A remark on determination of transonic shocks in divergent nozzle for steady compressible Euler flows, Nonlinear Anal. Real World Appl., 9 (2008), 316-325.
doi: 10.1016/j.nonrwa.2006.10.006. |
show all references
References:
[1] |
M. Bae and M. Feldman,
Transonic shocks in multidimensional divergent nozzles, Arch. Ration. Mech. Anal., 201 (2011), 777-840.
doi: 10.1007/s00205-011-0424-0. |
[2] |
P. Degond and P. A. Markowich,
On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett., 3 (1990), 25-29.
doi: 10.1016/0893-9659(90)90130-4. |
[3] |
I. M. Gamba,
Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Commun. Partial Differ. Equ., 17 (1992), 553-577.
doi: 10.1080/03605309208820853. |
[4] |
M. W. Hirsch, S. Smale and R. L. Devney, Differential Equations, Dynamical Systems and An introduction to Chaos, 2nd edn., Elsevier, USA, 2004. |
[5] |
T.-P. Liu,
Nonlinear stability and instability of tranosnic gas flow through a nozzle, Commun. Math. Phys., 83 (1982), 243-260.
doi: 10.1007/BF01976043. |
[6] |
T. Luo, J. Rauch, C. Xie and Z. Xin,
Stability of transonic shock solutions for one-dimensional euler-poisson equations, Arch. Ration. Mech. Anal., 202 (2011), 787-827.
doi: 10.1007/s00205-011-0433-z. |
[7] |
T. Luo and Z. Xin,
Transonic shock solutions for a system of Euler-Poisson equations, Commun. Math. Sci., 10 (2012), 419-462.
doi: 10.4310/CMS.2012.v10.n2.a1. |
[8] |
H. R. Yuan,
A remark on determination of transonic shocks in divergent nozzle for steady compressible Euler flows, Nonlinear Anal. Real World Appl., 9 (2008), 316-325.
doi: 10.1016/j.nonrwa.2006.10.006. |



[1] |
Myoungjean Bae, Hyangdong Park. Three-dimensional supersonic flows of Euler-Poisson system for potential flow. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2421-2440. doi: 10.3934/cpaa.2021079 |
[2] |
Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108 |
[3] |
Jianwei Yang, Dongling Li, Xiao Yang. On the quasineutral limit for the compressible Euler-Poisson equations. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022020 |
[4] |
Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583 |
[5] |
Hong Cai, Zhong Tan. Stability of stationary solutions to the compressible bipolar Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4677-4696. doi: 10.3934/dcds.2017201 |
[6] |
Haigang Li, Jiguang Bao. Euler-Poisson equations related to general compressible rotating fluids. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1085-1096. doi: 10.3934/dcds.2011.29.1085 |
[7] |
Yinzheng Sun, Qin Wang, Kyungwoo Song. Subsonic solutions to a shock diffraction problem by a convex cornered wedge for the pressure gradient system. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4899-4920. doi: 10.3934/cpaa.2020217 |
[8] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[9] |
Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086 |
[10] |
Léo Bois, Emmanuel Franck, Laurent Navoret, Vincent Vigon. A neural network closure for the Euler-Poisson system based on kinetic simulations. Kinetic and Related Models, 2022, 15 (1) : 49-89. doi: 10.3934/krm.2021044 |
[11] |
Eun Heui Kim. Boundary gradient estimates for subsonic solutions of compressible transonic potential flows. Conference Publications, 2007, 2007 (Special) : 573-579. doi: 10.3934/proc.2007.2007.573 |
[12] |
Min Ding, Hairong Yuan. Stability of transonic jets with strong rarefaction waves for two-dimensional steady compressible Euler system. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2911-2943. doi: 10.3934/dcds.2018125 |
[13] |
A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515 |
[14] |
Dongfen Bian, Huimin Liu, Xueke Pu. Modulation approximation for the quantum Euler-Poisson equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4375-4405. doi: 10.3934/dcdsb.2020292 |
[15] |
Yeping Li. Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 345-360. doi: 10.3934/dcdsb.2011.16.345 |
[16] |
Ming Mei, Yong Wang. Stability of stationary waves for full Euler-Poisson system in multi-dimensional space. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1775-1807. doi: 10.3934/cpaa.2012.11.1775 |
[17] |
Qiangchang Ju, Hailiang Li, Yong Li, Song Jiang. Quasi-neutral limit of the two-fluid Euler-Poisson system. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1577-1590. doi: 10.3934/cpaa.2010.9.1577 |
[18] |
Corrado Lattanzio, Pierangelo Marcati. The relaxation to the drift-diffusion system for the 3-$D$ isentropic Euler-Poisson model for semiconductors. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 449-455. doi: 10.3934/dcds.1999.5.449 |
[19] |
Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure and Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549 |
[20] |
Gui-Qiang G. Chen, Hairong Yuan. Local uniqueness of steady spherical transonic shock-fronts for the three--dimensional full Euler equations. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2515-2542. doi: 10.3934/cpaa.2013.12.2515 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]