October  2018, 11(5): 773-791. doi: 10.3934/dcdss.2018049

Radial transonic shock solutions of Euler-Poisson system in convergent nozzles

1. 

Department of Mathematics, POSTECH, Pohang Gyungbuk, 37673, Republic of Korea

2. 

Korea Institute for Advanced Study 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea

* Corresponding author: Myoungjean Bae

Received  February 2017 Revised  May 2017 Published  June 2018

Fund Project: The first author is supported in part by Samsung Science and Technology Foundation under Project Number SSTF-BA1502-02. The second author supported in part under the framework of international cooperation program managed by National Research Foundation of Korea(NRF- 2015K2A2A2002145)

Given constant data of density $ρ_0$, velocity $-u_0{\bf e}_r$, pressure $p_0$ and electric force $-E_0{\bf e}_r$ for supersonic flow at the entrance, and constant pressure $p_{\rm ex}$ for subsonic flow at the exit, we prove that Euler-Poisson system admits a unique transonic shock solution in a two dimensional convergent nozzle, provided that $u_0>0$, $E_0>0$, and that $E_0$ is sufficiently large depending on $(ρ_0, u_0, p_0)$ and the length of the nozzle.

Citation: Myoungjean Bae, Yong Park. Radial transonic shock solutions of Euler-Poisson system in convergent nozzles. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 773-791. doi: 10.3934/dcdss.2018049
References:
[1]

M. Bae and M. Feldman, Transonic shocks in multidimensional divergent nozzles, Arch. Ration. Mech. Anal., 201 (2011), 777-840. doi: 10.1007/s00205-011-0424-0. Google Scholar

[2]

P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett., 3 (1990), 25-29. doi: 10.1016/0893-9659(90)90130-4. Google Scholar

[3]

I. M. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Commun. Partial Differ. Equ., 17 (1992), 553-577. doi: 10.1080/03605309208820853. Google Scholar

[4]

M. W. Hirsch, S. Smale and R. L. Devney, Differential Equations, Dynamical Systems and An introduction to Chaos, 2nd edn., Elsevier, USA, 2004. Google Scholar

[5]

T.-P. Liu, Nonlinear stability and instability of tranosnic gas flow through a nozzle, Commun. Math. Phys., 83 (1982), 243-260. doi: 10.1007/BF01976043. Google Scholar

[6]

T. LuoJ. RauchC. Xie and Z. Xin, Stability of transonic shock solutions for one-dimensional euler-poisson equations, Arch. Ration. Mech. Anal., 202 (2011), 787-827. doi: 10.1007/s00205-011-0433-z. Google Scholar

[7]

T. Luo and Z. Xin, Transonic shock solutions for a system of Euler-Poisson equations, Commun. Math. Sci., 10 (2012), 419-462. doi: 10.4310/CMS.2012.v10.n2.a1. Google Scholar

[8]

H. R. Yuan, A remark on determination of transonic shocks in divergent nozzle for steady compressible Euler flows, Nonlinear Anal. Real World Appl., 9 (2008), 316-325. doi: 10.1016/j.nonrwa.2006.10.006. Google Scholar

show all references

References:
[1]

M. Bae and M. Feldman, Transonic shocks in multidimensional divergent nozzles, Arch. Ration. Mech. Anal., 201 (2011), 777-840. doi: 10.1007/s00205-011-0424-0. Google Scholar

[2]

P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett., 3 (1990), 25-29. doi: 10.1016/0893-9659(90)90130-4. Google Scholar

[3]

I. M. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Commun. Partial Differ. Equ., 17 (1992), 553-577. doi: 10.1080/03605309208820853. Google Scholar

[4]

M. W. Hirsch, S. Smale and R. L. Devney, Differential Equations, Dynamical Systems and An introduction to Chaos, 2nd edn., Elsevier, USA, 2004. Google Scholar

[5]

T.-P. Liu, Nonlinear stability and instability of tranosnic gas flow through a nozzle, Commun. Math. Phys., 83 (1982), 243-260. doi: 10.1007/BF01976043. Google Scholar

[6]

T. LuoJ. RauchC. Xie and Z. Xin, Stability of transonic shock solutions for one-dimensional euler-poisson equations, Arch. Ration. Mech. Anal., 202 (2011), 787-827. doi: 10.1007/s00205-011-0433-z. Google Scholar

[7]

T. Luo and Z. Xin, Transonic shock solutions for a system of Euler-Poisson equations, Commun. Math. Sci., 10 (2012), 419-462. doi: 10.4310/CMS.2012.v10.n2.a1. Google Scholar

[8]

H. R. Yuan, A remark on determination of transonic shocks in divergent nozzle for steady compressible Euler flows, Nonlinear Anal. Real World Appl., 9 (2008), 316-325. doi: 10.1016/j.nonrwa.2006.10.006. Google Scholar

Figure 1.  Transonic shock of E-P system in a convergent domain($E_{\pm}>0, u_{\pm}>0$)
Figure 2.  Transonic shocks of Euler system(left: well-posed, right: ill-posed)
Figure 3.  Transonic shock of E-P system in a flat nozzle (conditionally well-posed)
[1]

Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108

[2]

Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583

[3]

Hong Cai, Zhong Tan. Stability of stationary solutions to the compressible bipolar Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4677-4696. doi: 10.3934/dcds.2017201

[4]

Haigang Li, Jiguang Bao. Euler-Poisson equations related to general compressible rotating fluids. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1085-1096. doi: 10.3934/dcds.2011.29.1085

[5]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[6]

Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086

[7]

Eun Heui Kim. Boundary gradient estimates for subsonic solutions of compressible transonic potential flows. Conference Publications, 2007, 2007 (Special) : 573-579. doi: 10.3934/proc.2007.2007.573

[8]

Min Ding, Hairong Yuan. Stability of transonic jets with strong rarefaction waves for two-dimensional steady compressible Euler system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2911-2943. doi: 10.3934/dcds.2018125

[9]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[10]

Qiangchang Ju, Hailiang Li, Yong Li, Song Jiang. Quasi-neutral limit of the two-fluid Euler-Poisson system. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1577-1590. doi: 10.3934/cpaa.2010.9.1577

[11]

Yeping Li. Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 345-360. doi: 10.3934/dcdsb.2011.16.345

[12]

Ming Mei, Yong Wang. Stability of stationary waves for full Euler-Poisson system in multi-dimensional space. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1775-1807. doi: 10.3934/cpaa.2012.11.1775

[13]

Corrado Lattanzio, Pierangelo Marcati. The relaxation to the drift-diffusion system for the 3-$D$ isentropic Euler-Poisson model for semiconductors. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 449-455. doi: 10.3934/dcds.1999.5.449

[14]

Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure & Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549

[15]

Gui-Qiang G. Chen, Hairong Yuan. Local uniqueness of steady spherical transonic shock-fronts for the three--dimensional full Euler equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2515-2542. doi: 10.3934/cpaa.2013.12.2515

[16]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[17]

Manwai Yuen. Cylindrical blowup solutions to the isothermal Euler-Poisson equations. Conference Publications, 2011, 2011 (Special) : 1448-1456. doi: 10.3934/proc.2011.2011.1448

[18]

Jiang Xu, Ting Zhang. Zero-electron-mass limit of Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4743-4768. doi: 10.3934/dcds.2013.33.4743

[19]

Sasho Popov, Jean-Marie Strelcyn. The Euler-Poisson equations: An elementary approach to integrability conditions. Journal of Geometric Mechanics, 2018, 10 (3) : 293-329. doi: 10.3934/jgm.2018011

[20]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (46)
  • HTML views (100)
  • Cited by (0)

Other articles
by authors

[Back to Top]