
-
Previous Article
A flame propagation model on a network with application to a blocking problem
- DCDS-S Home
- This Issue
-
Next Article
Radial transonic shock solutions of Euler-Poisson system in convergent nozzles
The vanishing viscosity limit for a system of H-J equations related to a debt management problem
Department of Mathematics, Penn State University, University Park, PA 16802, USA |
The paper studies a system of Hamilton-Jacobi equations, arising from a model of optimal debt management in infinite time horizon, with exponential discount and a bankruptcy risk. For a stochastic model with positive diffusion, the existence of an equilibrium solution is obtained by a topological argument. Of particular interest is the limit of these viscous solutions, as the diffusion parameter approaches zero. Under suitable assumptions, this (possibly discontinuous) limit can be interpreted as an equilibrium solution to a non-cooperative differential game with deterministic dynamics.
References:
[1] |
H. Amann,
Invariant sets and existence theorems for semilinear parabolic equation and elliptic system, J. Math. Anal. Appl., 65 (1978), 432-467.
doi: 10.1016/0022-247X(78)90192-0. |
[2] |
M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, 1997.
doi: 10.1007/978-0-8176-4755-1. |
[3] |
G. Barles,
Solutions de Viscosité des Équations de Hamilton-Jacobi, Springer-Verlag, Paris, 1994. |
[4] |
G. Barles, A. Briani and E. Chasseigne,
A Bellman approach for two-domains optimal control problems in $R^N$, ESAIM Control Optim. Calc. Var., 19 (2013), 710-739.
doi: 10.1051/cocv/2012030. |
[5] |
G. Barles and E. Chasseigne,
(Almost) everything you always wanted to know about deterministic control problems in stratified domains, Netw. Heterog. Media, 10 (2015), 809-836.
doi: 10.3934/nhm.2015.10.809. |
[6] |
R. Barnard and P. Wolenski,
Flow invariance on stratified domains, Set-Valued Var. Anal., 21 (2013), 377-403.
doi: 10.1007/s11228-013-0230-y. |
[7] |
A. Bressan and Y. Hong, Optimal control problems on stratified domains, Netw. Heter. Media, 2 (2007), 313–331 (with Y. Hong). Errata Corrige in Netw. Heter. Media, 8 (2013), 625.
doi: 10.3934/nhm.2007.2.313. |
[8] |
A. Bressan and Y. Jiang,
Optimal open-loop strategies in a debt management problem, Analysis & Appl., 16 (2018), 133-157.
doi: 10.1142/S0219530517500038. |
[9] |
A. Bressan, A. Marigonda, K. Nguyen and M. Palladino,
A stochastic model of optimal debt management and bankruptcy, SIAM J. Financial Math., 8 (2017), 841-873.
doi: 10.1137/16M1095019. |
[10] |
A. Bressan and K. Ngyuen,
A game theoretical model of debt and bankruptcy, ESAIM: Control, Optim. Calc. Variat., 22 (2016), 953-982.
doi: 10.1051/cocv/2016030. |
[11] |
A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, AIMS Series in Applied Mathematics, Springfield Mo. 2007. |
[12] |
M. G. Crandall and P. L. Lions,
Viscosity solutions of Hamilton-Jacobi equations, Trans. American Math. Soc., 277 (1983), 1-42.
doi: 10.1090/S0002-9947-1983-0690039-8. |
[13] |
C. De Zan and P. Soravia,
Cauchy problems for noncoercive Hamilton-Jacobi-Isaacs equations with discontinuous coefficients, Interfaces Free Bound, 12 (2010), 347-368.
doi: 10.4171/IFB/238. |
[14] |
M. Garavello and P. Soravia,
Optimality principles and uniqueness for Bellman equations of unbounded control problems with discontinuous running cost, Nonlinear Differential Equations Appl, 11 (2004), 271-298.
doi: 10.1007/s00030-004-1058-9. |
[15] |
M. Garavello and P. Soravia,
Representation formulas for solutions of the HJI equations with discontinuous coefficients and existence of value in differential games, J. Optim. Theory Appl., 130 (2006), 209-229.
doi: 10.1007/s10957-006-9099-3. |
[16] |
G. Nuño and C. Thomas, Monetary policy and Sovereign Debt Vulnerability, Working document n. 1517, Banco de España Publications, 2015. |
[17] |
Z. Rao, A. Camilli and H. Zidani,
Transmission conditions on interfaces for Hamilton-Jacobi-Bellman equations, J. Differential Equations, 257 (2014), 3978-4014.
doi: 10.1016/j.jde.2014.07.015. |
[18] |
S. E. Shreve, Stochastic Calculus for Finance. Ⅱ. Continuous-time Models, Springer-Verlag, New York, 2004. |
show all references
References:
[1] |
H. Amann,
Invariant sets and existence theorems for semilinear parabolic equation and elliptic system, J. Math. Anal. Appl., 65 (1978), 432-467.
doi: 10.1016/0022-247X(78)90192-0. |
[2] |
M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, 1997.
doi: 10.1007/978-0-8176-4755-1. |
[3] |
G. Barles,
Solutions de Viscosité des Équations de Hamilton-Jacobi, Springer-Verlag, Paris, 1994. |
[4] |
G. Barles, A. Briani and E. Chasseigne,
A Bellman approach for two-domains optimal control problems in $R^N$, ESAIM Control Optim. Calc. Var., 19 (2013), 710-739.
doi: 10.1051/cocv/2012030. |
[5] |
G. Barles and E. Chasseigne,
(Almost) everything you always wanted to know about deterministic control problems in stratified domains, Netw. Heterog. Media, 10 (2015), 809-836.
doi: 10.3934/nhm.2015.10.809. |
[6] |
R. Barnard and P. Wolenski,
Flow invariance on stratified domains, Set-Valued Var. Anal., 21 (2013), 377-403.
doi: 10.1007/s11228-013-0230-y. |
[7] |
A. Bressan and Y. Hong, Optimal control problems on stratified domains, Netw. Heter. Media, 2 (2007), 313–331 (with Y. Hong). Errata Corrige in Netw. Heter. Media, 8 (2013), 625.
doi: 10.3934/nhm.2007.2.313. |
[8] |
A. Bressan and Y. Jiang,
Optimal open-loop strategies in a debt management problem, Analysis & Appl., 16 (2018), 133-157.
doi: 10.1142/S0219530517500038. |
[9] |
A. Bressan, A. Marigonda, K. Nguyen and M. Palladino,
A stochastic model of optimal debt management and bankruptcy, SIAM J. Financial Math., 8 (2017), 841-873.
doi: 10.1137/16M1095019. |
[10] |
A. Bressan and K. Ngyuen,
A game theoretical model of debt and bankruptcy, ESAIM: Control, Optim. Calc. Variat., 22 (2016), 953-982.
doi: 10.1051/cocv/2016030. |
[11] |
A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, AIMS Series in Applied Mathematics, Springfield Mo. 2007. |
[12] |
M. G. Crandall and P. L. Lions,
Viscosity solutions of Hamilton-Jacobi equations, Trans. American Math. Soc., 277 (1983), 1-42.
doi: 10.1090/S0002-9947-1983-0690039-8. |
[13] |
C. De Zan and P. Soravia,
Cauchy problems for noncoercive Hamilton-Jacobi-Isaacs equations with discontinuous coefficients, Interfaces Free Bound, 12 (2010), 347-368.
doi: 10.4171/IFB/238. |
[14] |
M. Garavello and P. Soravia,
Optimality principles and uniqueness for Bellman equations of unbounded control problems with discontinuous running cost, Nonlinear Differential Equations Appl, 11 (2004), 271-298.
doi: 10.1007/s00030-004-1058-9. |
[15] |
M. Garavello and P. Soravia,
Representation formulas for solutions of the HJI equations with discontinuous coefficients and existence of value in differential games, J. Optim. Theory Appl., 130 (2006), 209-229.
doi: 10.1007/s10957-006-9099-3. |
[16] |
G. Nuño and C. Thomas, Monetary policy and Sovereign Debt Vulnerability, Working document n. 1517, Banco de España Publications, 2015. |
[17] |
Z. Rao, A. Camilli and H. Zidani,
Transmission conditions on interfaces for Hamilton-Jacobi-Bellman equations, J. Differential Equations, 257 (2014), 3978-4014.
doi: 10.1016/j.jde.2014.07.015. |
[18] |
S. E. Shreve, Stochastic Calculus for Finance. Ⅱ. Continuous-time Models, Springer-Verlag, New York, 2004. |





[1] |
Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617 |
[2] |
Stefano Bianchini, Alberto Bressan. A case study in vanishing viscosity. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 449-476. doi: 10.3934/dcds.2001.7.449 |
[3] |
Umberto Mosco, Maria Agostina Vivaldi. Vanishing viscosity for fractal sets. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1207-1235. doi: 10.3934/dcds.2010.28.1207 |
[4] |
Qian Zhao, Zhuo Jin, Jiaqin Wei. Optimal investment and dividend payment strategies with debt management and reinsurance. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1323-1348. doi: 10.3934/jimo.2018009 |
[5] |
Hua Chen, Jian-Meng Li, Kelei Wang. On the vanishing viscosity limit of a chemotaxis model. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1963-1987. doi: 10.3934/dcds.2020101 |
[6] |
Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial and Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161 |
[7] |
Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1115-1132. doi: 10.3934/jimo.2021011 |
[8] |
Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015 |
[9] |
Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Z. Zgurovsky. Strong attractors for vanishing viscosity approximations of non-Newtonian suspension flows. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1155-1176. doi: 10.3934/dcdsb.2018146 |
[10] |
Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257 |
[11] |
Thomas Strömberg. A system of the Hamilton--Jacobi and the continuity equations in the vanishing viscosity limit. Communications on Pure and Applied Analysis, 2011, 10 (2) : 479-506. doi: 10.3934/cpaa.2011.10.479 |
[12] |
K. T. Joseph, Manas R. Sahoo. Vanishing viscosity approach to a system of conservation laws admitting $\delta''$ waves. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2091-2118. doi: 10.3934/cpaa.2013.12.2091 |
[13] |
Frederic Rousset. The residual boundary conditions coming from the real vanishing viscosity method. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 605-625. doi: 10.3934/dcds.2002.8.606 |
[14] |
John D. Towers. An explicit finite volume algorithm for vanishing viscosity solutions on a network. Networks and Heterogeneous Media, 2022, 17 (1) : 1-13. doi: 10.3934/nhm.2021021 |
[15] |
Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra. Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks and Heterogeneous Media, 2013, 8 (4) : 969-984. doi: 10.3934/nhm.2013.8.969 |
[16] |
Andrew J. Whittle, Suzanne Lenhart, Louis J. Gross. Optimal control for management of an invasive plant species. Mathematical Biosciences & Engineering, 2007, 4 (1) : 101-112. doi: 10.3934/mbe.2007.4.101 |
[17] |
Heinz Schättler, Urszula Ledzewicz. Perturbation feedback control: A geometric interpretation. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 631-654. doi: 10.3934/naco.2012.2.631 |
[18] |
Eddaly Guerra, Héctor Sánchez-Morgado. Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 331-346. doi: 10.3934/cpaa.2014.13.331 |
[19] |
Wenjun Wang, Lei Yao. Vanishing viscosity limit to rarefaction waves for the full compressible fluid models of Korteweg type. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2331-2350. doi: 10.3934/cpaa.2014.13.2331 |
[20] |
Jing Wang, Lining Tong. Vanishing viscosity limit of 1d quasilinear parabolic equation with multiple boundary layers. Communications on Pure and Applied Analysis, 2019, 18 (2) : 887-910. doi: 10.3934/cpaa.2019043 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]