We consider the Cauchy problem
$\left\{ \begin{array}{*{35}{l}} {{\partial }_{t}}u+H(x,Du) = 0&(x,t)\in \Gamma \times (0,T) \\ u(x,0) = {{u}_{0}}(x)&x\in \Gamma \\\end{array} \right.$
where $\Gamma$ is a network and $H$ is a positive homogeneous Hamiltonian which may change from edge to edge. In the first part of the paper, we prove that the Hopf-Lax type formula gives the (unique) viscosity solution of the problem. In the latter part of the paper we study a flame propagation model in a network and an optimal strategy to block a fire breaking up in some part of a pipeline; some numerical simulations are provided.
Citation: |
[1] |
Y. Achdou, F. Camilli, A. Cutrí and N. Tchou, Hamilton-Jacobi equations constrained on networks, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 413-445.
doi: 10.1007/s00030-012-0158-1.![]() ![]() ![]() |
[2] |
M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkäuser, Boston, 1997.
doi: 10.1007/978-0-8176-4755-1.![]() ![]() ![]() |
[3] |
G. Barles, Remark on a Flame Propagation Model, Report INRIA #464, 1985.
![]() |
[4] |
G. Barles, H. M. Soner and P. Souganidis, Front propagations and phase field theory, SIAM J. Control Optim., 31 (1993), 439-469.
doi: 10.1137/0331021.![]() ![]() ![]() |
[5] |
F. Camilli and C. Marchi, A comparison among various notions of viscosity solution for Hamilton-Jacobi equations on networks, J. Math. Anal. Appl., 407 (2013), 112-118.
doi: 10.1016/j.jmaa.2013.05.015.![]() ![]() ![]() |
[6] |
F. Camilli, C. Marchi and D. Schieborn, The vanishing viscosity limit for Hamilton-Jacobi equation on networks, J. Differential Equations, 254 (2013), 4122-4143.
doi: 10.1016/j.jde.2013.02.013.![]() ![]() ![]() |
[7] |
F. Camilli, A. Festa and D. Schieborn, An approximation scheme for an Hamilton-Jacobi equation defined on a network, Applied Num. Math., 73 (2013), 33-47.
doi: 10.1016/j.apnum.2013.05.003.![]() ![]() ![]() |
[8] |
Y. G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), 749-786.
doi: 10.4310/jdg/1214446564.![]() ![]() ![]() |
[9] |
G. Costeseque, J.-P. Lebacque and R. Monneau, A convergent scheme for Hamilton-Jacobi equations on a junction: application to traffic, Numer. Math., 129 (2015), 405-447.
doi: 10.1007/s00211-014-0643-z.![]() ![]() ![]() |
[10] |
M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences, Springfield, MO, 2006.
![]() ![]() |
[11] |
A. Khanafer and T. Başar, Information Spread in Networks: Control, Game and Equilibria, Proc. Information theory and Application Workshop (ITA'14), San Diego, 2014.
![]() ![]() |
[12] |
C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, Ann. Sci. Éc. Norm. Supér., 50 (2017), 357-448.
doi: 10.24033/asens.2323.![]() ![]() ![]() |
[13] |
P.-L. Lions and P. E. Souganidis, Viscosity solutions for junctions: well posedness and stability, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 27 (2016), 535-545.
doi: 10.4171/RLM/747.![]() ![]() ![]() |
[14] |
P.-L. Lions and P. E. Souganidis, Well posedness for multi-dimensional junction problems with Kirchoff-type conditions, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 807-816.
doi: 10.4171/RLM/786.![]() ![]() ![]() |
[15] |
D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Understanding Complex Systems, Springer, Berlin, 2014.
doi: 10.1007/978-3-319-04621-1.![]() ![]() ![]() |
[16] |
G. Namah and J. M. Roquejoffre, Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations, Comm. Partial Differential Equations, 24 (1999), 883-893.
doi: 10.1080/03605309908821451.![]() ![]() ![]() |
[17] |
D. Schieborn and F. Camilli, Viscosity solutions of Eikonal equations on topological network, Calc. Var. Partial Differential Equations, 46 (2013), 671-686.
doi: 10.1007/s00526-012-0498-z.![]() ![]() ![]() |
[18] |
A. Siconolfi, A first order Hamilton-Jacobi equation with singularity and the evolution of level sets, Comm. Partial Differential Equations, 20 (1995), 277-307.
doi: 10.1080/03605309508821094.![]() ![]() ![]() |
[19] |
A. Siconolfi, Metric character of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 355 (2003), 1987-2009.
doi: 10.1090/S0002-9947-03-03237-9.![]() ![]() ![]() |
[20] |
P. Soravia, Generalized motion of front along its normal direction: A differential game approach, Nonlinear Anal. TMA, 22 (1994), 1247-1262.
doi: 10.1016/0362-546X(94)90108-2.![]() ![]() ![]() |
[21] |
P. Van Mieghem, J. Omic and R. Kooij, Virus spread in Networks, IEEE/ACM Trans. on networking, 17 (2009), 1-14.
doi: 10.1109/TNET.2008.925623.![]() ![]() |