|
M. D. Ahmad, M. Usman, A. Khan and M. Imran, Optimal control analysis of Ebola disease with control strategies of quarantine and vaccination, Infectious Diseases of Poverty, 5 (2016), p72.
doi: 10.1186/s40249-016-0161-6.
|
|
P. S. Aleksandrov, Introduction to Set Theory and General Topology, Nauka, Moscow, 1977.
|
|
A. I. Astrovskii
and I. V. Gaishun
, Quasidifferentiability and observability of linear nonstationary systems, Diff. Equat., 45 (2009)
, 1602-1611.
doi: 10.1134/S0012266109110061.
|
|
A. I. Astrovskii
and I. V. Gaishun
, Controllability of linear nonstationary systems with scalar input and quasidifferentiable coefficients, Diff. Equat., 49 (2013)
, 1018-1026.
doi: 10.1134/S0012266113080107.
|
|
B. P. Demidovich, Lectures on Stability Theory, Nauka, Moscow, 1967.
|
|
P. Diaz, P. Constantine, K. Kalmbach, E. Jones and S. Pankavich, A modified SEIR model for the spread of Ebola in Western Africa and metrics for resource allocation, Appl. Math. Comput., 324 (2018), 141–155, arXiv: 1603.04955.
doi: 10.1016/j.amc.2017.11.039.
|
|
A. V. Dmitruk
, A generalized estimate on the number of zeros for solutions of a class of linear differential equations, SIAM J. Control Optim., 30 (1992)
, 1087-1091.
doi: 10.1137/0330057.
|
|
B. Ebenezer
, K. Badu
and A.-A. S. Kwesi
, Optimal control application to an Ebola model, Health Science Journal, 10 (2016)
, 1-7.
|
|
H. Gaff
and E. Schaefer
, Optimal control applied to vaccination and treatment strategies for various epidemiological models, Math. Biosci. Eng., 6 (2009)
, 469-492.
doi: 10.3934/mbe.2009.6.469.
|
|
M. F. C. Gomes, A. P. y Pointti, L. Rossi, D. Chao, I. Longini, M. E. Halloran and A. Vespignani, Assessing the international spreading risk associated with the 2014 West African Ebola outbreak, PLOC Current Outbreaks, 2014 Sep 2, Edition 1.
doi: 10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5.
|
|
E. Grigorieva and E. Khailov, Analytic study of optimal control intervention strategies for Ebola epidemic model, in Proceedings of the SIAM Conference on Control and its Applications (CT15), Paris, France, July 8–10, (2015), 392–399.
|
|
E. V. Grigorieva
and E. N. Khailov
, Optimal intervention strategies for a SEIR control model of Ebola epidemics, Mathematics, 3 (2015)
, 961-983.
|
|
E. V. Grigorieva
and E. N. Khailov
, Estimating the number of switchings of the optimal intervention strategies for SEIR control model of Ebola epidemics, Pure and Applied Functional Analysis, 1 (2016)
, 541-572.
|
|
E. Grigorieva
and E. Khailov
, Optimal priventive strategies for SEIR type model of 2014 Ebola epidemics, Dynam. Cont. Dis. Ser. B, 24 (2017)
, 155-182.
|
|
E. Grigorieva
, E. Khailov
and A. Korobeinikov
, Optimal control for an epidemic in populations of varying size, Discret. Contin. Dyn. Syst., supplement (2015)
, 549-561.
doi: 10.3934/proc.2015.0549.
|
|
E. V. Grigorieva
, E. N. Khailov
and A. Korobeinikov
, Optimal control for a SIR epidemic model with nonlinear incidence rate, Math. Model. Nat. Phenom., 11 (2016)
, 89-104.
doi: 10.1051/mmnp/201611407.
|
|
P. Hartman, Ordinary Differential Equations, John Wiley & Sons, New York, 1964.
|
|
D. Hincapié-Palacio
, J. Ospina
and D. F. M. Torres
, Approximated analytical solution to an Ebola optimal control problem, International Journal for Computational Methods in Engineering Science and Mechanics, 17 (2016)
, 382-390.
doi: 10.1080/15502287.2016.1231236.
|
|
E. N. Khailov
and E. V. Grigorieva
, On the extensibility of solutions of nonautonomous quadratic differential systems, Trudy Inst. Mat. i Mekh. UrO RAN, 19 (2013)
, 279-288.
|
|
E. N. Khailov and E. V. Grigorieva, On splitting quadratic system of differential equations, in Systems Analysis: Modeling and Control, Abstracts of the Intrenational Conference in memory of Academician Arkady Kryazhimskiy, Ekaterinburg, Russia, October 3–8, (2016), 64–66.
|
|
U. Ledzewicz
and H. Schättler
, On optimal singular controls for a general SIR-model with vaccination and treatment, Discret. Contin. Dyn. Syst., supplement (2011)
, 981-990.
|
|
E. B. Lee and L. Marcus, Foundations of Optimal Control Theory, John Wiley & Sons, New York, 1967.
|
|
J. Legrand
, R. F. Grais
, P. Y. Boelle
, A. J. Valleron
and A. Flahault
, Understanding the dynamics of Ebola epidemics, Epidemiol. Infect., 135 (2007)
, 610-621.
|
|
H. Maurer
, C. Büskens
, J.-H. R. Kim
and Y. Kaya
, Optimization methods for the verification of second-order sufficient conditions for bang-bang controls, Optim. Contr. Appl. Met., 26 (2005)
, 129-156.
doi: 10.1002/oca.756.
|
|
F. T. Oduro, G. Apaaboah and J. Baafi, Optimal control of Ebola transmission dynamics with interventions, British Journal of Mathematics & Computer Sciences, 19 (2016), Article BJMCS. 29372, 1–19.
|
|
N. P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control: SecondOrder Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control, SIAM Advances in Design and Control, vol. DC24, SIAM Publications, Philadelphia, 2012.
doi: 10.1137/1.9781611972368.
|
|
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, Mathematical Theory of Optimal Processes, John Wiley & Sons, New York, 1962.
|
|
A. Rachah and D. F. M. Torres, Mathematical modelling, simulation, and optimal control of the 2014 Ebola outbreak in West Africa, Discrete Dynamics in Nature and Society, (2015), Art. ID 842792, 9 pp.
doi: 10.1155/2015/842792.
|
|
C. M. Rivers, E. T. Lofgren, M. Marathe, S. Eubank and B. L. Lewis, Modeling the impact of interventions on an epidemic of Ebola in Sierra Leone and Liberia, PLOC Current Outbreaks, 2014 Oct 16, Edition 1.
doi: 10.1371/currents.outbreaks.4d41fe5d6c05e9df30ddce33c66d084c.
|
|
H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples, Springer, New York-Heidelberg-Dordrecht-London, 2012.
doi: 10.1007/978-1-4614-3834-2.
|
|
A. N. Tikhonov, A. B. vasileva and A. G. Sveshnikov, Differential Equations, SpringerVerlag, Berlin-Heidelberg-New York, 1985.
doi: 10.1007/978-3-642-82175-2.
|
|
F. P. vasilev, Optimization Methods, Factorial Press, Moscow, 2002.
|