December  2018, 11(6): 1143-1167. doi: 10.3934/dcdss.2018065

First-order partial differential equations and consumer theory

1-50-1601 Miyamachi, Fuchu, Tokyo, 183-0023, Japan

Received  February 2017 Revised  June 2017 Published  June 2018

In this paper, we show that the existence of a global solution of a standard first-order partial differential equation can be reduced to the extendability of the solution of the corresponding ordinary differential equation under the differentiable and locally Lipschitz environments. By using this result, we can produce many known existence theorems for partial differential equations. Moreover, we demonstrate that such a result can be applied to the integrability problem in consumer theory. This result holds even if the differentiability condition is dropped.

Citation: Yuhki Hosoya. First-order partial differential equations and consumer theory. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1143-1167. doi: 10.3934/dcdss.2018065
References:
[1]

J. Dieudonné, Foundations of Modern Analysis, Hesperides press, 2006.  Google Scholar

[2]

P. Hartman, Ordinary Differential Equations, Birkhäuser Boston, Mass., 1982.  Google Scholar

[3]

Y. Hosoya, On first-order partial differential equations: An existence theorem and its applications, Advances in Mathematical Economics, 20 (2016), 77-87.  doi: 10.1007/978-981-10-0476-6_3.  Google Scholar

[4]

L. Hurwicz and H. Uzawa, On the Integrability of Demand Functions, in Preference, Utility and Demand (eds. J. S. Chipman, L. Hurwicz, M. K. Richter and H. F. Sonnenschein) Harcourt Brace Jovanovich, Inc., New York, (1971), 114–148.  Google Scholar

[5]

A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, Elsevier, 1979.  Google Scholar

[6]

W. Nikliborc, Sur les équations linéaires aux différentielles totales, Studia Mathematica, 1 (1929), 41-49.  doi: 10.4064/sm-1-1-41-49.  Google Scholar

[7]

L. S. Pontryagin, Ordinary Differential Equations, Addison-Wesley, Reading, Massachusetts, 1962.  Google Scholar

[8]

S. Smale and M. W. Hirsch, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, 1974.  Google Scholar

show all references

References:
[1]

J. Dieudonné, Foundations of Modern Analysis, Hesperides press, 2006.  Google Scholar

[2]

P. Hartman, Ordinary Differential Equations, Birkhäuser Boston, Mass., 1982.  Google Scholar

[3]

Y. Hosoya, On first-order partial differential equations: An existence theorem and its applications, Advances in Mathematical Economics, 20 (2016), 77-87.  doi: 10.1007/978-981-10-0476-6_3.  Google Scholar

[4]

L. Hurwicz and H. Uzawa, On the Integrability of Demand Functions, in Preference, Utility and Demand (eds. J. S. Chipman, L. Hurwicz, M. K. Richter and H. F. Sonnenschein) Harcourt Brace Jovanovich, Inc., New York, (1971), 114–148.  Google Scholar

[5]

A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, Elsevier, 1979.  Google Scholar

[6]

W. Nikliborc, Sur les équations linéaires aux différentielles totales, Studia Mathematica, 1 (1929), 41-49.  doi: 10.4064/sm-1-1-41-49.  Google Scholar

[7]

L. S. Pontryagin, Ordinary Differential Equations, Addison-Wesley, Reading, Massachusetts, 1962.  Google Scholar

[8]

S. Smale and M. W. Hirsch, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, 1974.  Google Scholar

[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[4]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[9]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[10]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[11]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[12]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[13]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[14]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[15]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[16]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[17]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[18]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[19]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[20]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (120)
  • HTML views (167)
  • Cited by (0)

Other articles
by authors

[Back to Top]