December  2018, 11(6): 1169-1177. doi: 10.3934/dcdss.2018066

Equilibrium locus of the flow on circular networks of cells

Depart. of Applied Mathematics, Holon Institute of Technology, Holon, Israel

Received  June 2016 Revised  September 2016 Published  June 2018

We perform a geometric study of the equilibrium locus of the flow that models the diffusion process over a circular network of cells. We prove that when considering the set of all possible values of the parameters, the equilibrium locus is a smooth manifold with corners, while for a given value of the parameters, it is an embedded smooth and connected curve. For different values of the parameters, the curves are all isomorphic.

Moreover, we show how to build a homotopy between different curves obtained for different values of the parameter set. This procedure allows the efficient computation of the equilibrium point for each value of some first integral of the system. This point would have been otherwise difficult to be computed for higher dimensions. We illustrate this construction by some numerical experiments.

Eventually, we show that when considering the parameters as inputs, one can easily bring the system asymptotically to any equilibrium point in the reachable set, which we also easily characterize.

Citation: Yirmeyahu J. Kaminski. Equilibrium locus of the flow on circular networks of cells. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1169-1177. doi: 10.3934/dcdss.2018066
References:
[1]

C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie, Bruxelles 1950, Paris, (1951), 29-55. 

[2]

D. Lazard and F. Rouillier, Solving parametric polynomial systems, Journal of Symbolic Computations, 42 (2007), 636-667.  doi: 10.1016/j.jsc.2007.01.007.

[3]

J. Lee, Introduction to Smooth Manifolds, 2$^{nd}$, Springer, 2013.

[4]

T. Y. Li, Numerical solution of multivariate polynomial systems by homotopy continuation methods, Acta Numerica, 6 (1997), 399-436.  doi: 10.1017/S0962492900002749.

[5]

J. Mather, Notes on topological stability, Bulletin of the American Mathematical Society, 49 (2012), 475-506.  doi: 10.1090/S0273-0979-2012-01383-6.

[6]

A. RavehY. ZaraiM. Margaliot and T. Ruller, Ribosome flow model on a ring, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12 (2015), 1429-1439.  doi: 10.1109/TCBB.2015.2418782.

show all references

References:
[1]

C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie, Bruxelles 1950, Paris, (1951), 29-55. 

[2]

D. Lazard and F. Rouillier, Solving parametric polynomial systems, Journal of Symbolic Computations, 42 (2007), 636-667.  doi: 10.1016/j.jsc.2007.01.007.

[3]

J. Lee, Introduction to Smooth Manifolds, 2$^{nd}$, Springer, 2013.

[4]

T. Y. Li, Numerical solution of multivariate polynomial systems by homotopy continuation methods, Acta Numerica, 6 (1997), 399-436.  doi: 10.1017/S0962492900002749.

[5]

J. Mather, Notes on topological stability, Bulletin of the American Mathematical Society, 49 (2012), 475-506.  doi: 10.1090/S0273-0979-2012-01383-6.

[6]

A. RavehY. ZaraiM. Margaliot and T. Ruller, Ribosome flow model on a ring, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12 (2015), 1429-1439.  doi: 10.1109/TCBB.2015.2418782.

Figure 1.  The homotopy path generated with the following parameters ${\mathit{\boldsymbol{\lambda}}}_1 = (1, 1, 1)$, ${\mathit{\boldsymbol{\lambda}}}_2 = ( 1.39328599, 8.30098374, 3.98355604)$ and $s = 1$. The first equilibrium point $E_0 = (1/3, 1/3, 1/3)$ is represented by a green ball, while the final equilibrium point $E_1 = ( 0.53112814, 0.1203633, 0.34850856)$ is rendered as a red triangle. Of course all over the path the constraint $e_1 + e_2 + e_3 = s$ holds.
[1]

Xiaoqi Wei, Guo-Wei Wei. Homotopy continuation for the spectra of persistent Laplacians. Foundations of Data Science, 2021, 3 (4) : 677-700. doi: 10.3934/fods.2021017

[2]

Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1795-1807. doi: 10.3934/jimo.2018123

[3]

Chunyang Zhang, Shugong Zhang, Qinghuai Liu. Homotopy method for a class of multiobjective optimization problems with equilibrium constraints. Journal of Industrial and Management Optimization, 2017, 13 (1) : 81-92. doi: 10.3934/jimo.2016005

[4]

Ouayl Chadli, Hicham Mahdioui, Jen-Chih Yao. Bilevel mixed equilibrium problems in Banach spaces : existence and algorithmic aspects. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 549-561. doi: 10.3934/naco.2011.1.549

[5]

Abdul Rahim Khan, Chinedu Izuchukwu, Maggie Aphane, Godwin Chidi Ugwunnadi. Modified inertial algorithm for solving mixed equilibrium problems in Hadamard spaces. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021039

[6]

Thorsten Hüls. Computing stable hierarchies of fiber bundles. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3341-3367. doi: 10.3934/dcdsb.2017140

[7]

Mauro Patrão, Luiz A. B. San Martin. Morse decomposition of semiflows on fiber bundles. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 561-587. doi: 10.3934/dcds.2007.17.561

[8]

Ouayl Chadli, Gayatri Pany, Ram N. Mohapatra. Existence and iterative approximation method for solving mixed equilibrium problem under generalized monotonicity in Banach spaces. Numerical Algebra, Control and Optimization, 2020, 10 (1) : 75-92. doi: 10.3934/naco.2019034

[9]

Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077

[10]

Oliver Butterley, Carlangelo Liverani. Robustly invariant sets in fiber contracting bundle flows. Journal of Modern Dynamics, 2013, 7 (2) : 255-267. doi: 10.3934/jmd.2013.7.255

[11]

David W. Pravica, Michael J. Spurr. Analytic continuation into the future. Conference Publications, 2003, 2003 (Special) : 709-716. doi: 10.3934/proc.2003.2003.709

[12]

Wolf-Jürgen Beyn, Thorsten Hüls. Continuation and collapse of homoclinic tangles. Journal of Computational Dynamics, 2014, 1 (1) : 71-109. doi: 10.3934/jcd.2014.1.71

[13]

Christian Pötzsche. Nonautonomous continuation of bounded solutions. Communications on Pure and Applied Analysis, 2011, 10 (3) : 937-961. doi: 10.3934/cpaa.2011.10.937

[14]

Victoria Sadovskaya. Fiber bunching and cohomology for Banach cocycles over hyperbolic systems. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4959-4972. doi: 10.3934/dcds.2017213

[15]

A. Daducci, A. Marigonda, G. Orlandi, R. Posenato. Neuronal Fiber--tracking via optimal mass transportation. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2157-2177. doi: 10.3934/cpaa.2012.11.2157

[16]

Guillermo H. Goldsztein. Bound on the yield set of fiber reinforced composites subjected to antiplane shear. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 391-400. doi: 10.3934/dcdsb.2011.15.391

[17]

Michael Herty, Axel Klar, Sébastien Motsch, Ferdinand Olawsky. A smooth model for fiber lay-down processes and its diffusion approximations. Kinetic and Related Models, 2009, 2 (3) : 489-502. doi: 10.3934/krm.2009.2.489

[18]

Kathryn Haymaker, Beth Malmskog, Gretchen L. Matthews. Locally recoverable codes with availability t≥2 from fiber products of curves. Advances in Mathematics of Communications, 2018, 12 (2) : 317-336. doi: 10.3934/amc.2018020

[19]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[20]

Jean-Baptiste Caillau, Bilel Daoud, Joseph Gergaud. Discrete and differential homotopy in circular restricted three-body control. Conference Publications, 2011, 2011 (Special) : 229-239. doi: 10.3934/proc.2011.2011.229

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (173)
  • HTML views (152)
  • Cited by (0)

Other articles
by authors

[Back to Top]