December  2018, 11(6): 1169-1177. doi: 10.3934/dcdss.2018066

Equilibrium locus of the flow on circular networks of cells

Depart. of Applied Mathematics, Holon Institute of Technology, Holon, Israel

Received  June 2016 Revised  September 2016 Published  June 2018

We perform a geometric study of the equilibrium locus of the flow that models the diffusion process over a circular network of cells. We prove that when considering the set of all possible values of the parameters, the equilibrium locus is a smooth manifold with corners, while for a given value of the parameters, it is an embedded smooth and connected curve. For different values of the parameters, the curves are all isomorphic.

Moreover, we show how to build a homotopy between different curves obtained for different values of the parameter set. This procedure allows the efficient computation of the equilibrium point for each value of some first integral of the system. This point would have been otherwise difficult to be computed for higher dimensions. We illustrate this construction by some numerical experiments.

Eventually, we show that when considering the parameters as inputs, one can easily bring the system asymptotically to any equilibrium point in the reachable set, which we also easily characterize.

Citation: Yirmeyahu J. Kaminski. Equilibrium locus of the flow on circular networks of cells. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1169-1177. doi: 10.3934/dcdss.2018066
References:
[1]

C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie, Bruxelles 1950, Paris, (1951), 29-55.   Google Scholar

[2]

D. Lazard and F. Rouillier, Solving parametric polynomial systems, Journal of Symbolic Computations, 42 (2007), 636-667.  doi: 10.1016/j.jsc.2007.01.007.  Google Scholar

[3]

J. Lee, Introduction to Smooth Manifolds, 2$^{nd}$, Springer, 2013.  Google Scholar

[4]

T. Y. Li, Numerical solution of multivariate polynomial systems by homotopy continuation methods, Acta Numerica, 6 (1997), 399-436.  doi: 10.1017/S0962492900002749.  Google Scholar

[5]

J. Mather, Notes on topological stability, Bulletin of the American Mathematical Society, 49 (2012), 475-506.  doi: 10.1090/S0273-0979-2012-01383-6.  Google Scholar

[6]

A. RavehY. ZaraiM. Margaliot and T. Ruller, Ribosome flow model on a ring, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12 (2015), 1429-1439.  doi: 10.1109/TCBB.2015.2418782.  Google Scholar

show all references

References:
[1]

C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie, Bruxelles 1950, Paris, (1951), 29-55.   Google Scholar

[2]

D. Lazard and F. Rouillier, Solving parametric polynomial systems, Journal of Symbolic Computations, 42 (2007), 636-667.  doi: 10.1016/j.jsc.2007.01.007.  Google Scholar

[3]

J. Lee, Introduction to Smooth Manifolds, 2$^{nd}$, Springer, 2013.  Google Scholar

[4]

T. Y. Li, Numerical solution of multivariate polynomial systems by homotopy continuation methods, Acta Numerica, 6 (1997), 399-436.  doi: 10.1017/S0962492900002749.  Google Scholar

[5]

J. Mather, Notes on topological stability, Bulletin of the American Mathematical Society, 49 (2012), 475-506.  doi: 10.1090/S0273-0979-2012-01383-6.  Google Scholar

[6]

A. RavehY. ZaraiM. Margaliot and T. Ruller, Ribosome flow model on a ring, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12 (2015), 1429-1439.  doi: 10.1109/TCBB.2015.2418782.  Google Scholar

Figure 1.  The homotopy path generated with the following parameters ${\mathit{\boldsymbol{\lambda}}}_1 = (1, 1, 1)$, ${\mathit{\boldsymbol{\lambda}}}_2 = ( 1.39328599, 8.30098374, 3.98355604)$ and $s = 1$. The first equilibrium point $E_0 = (1/3, 1/3, 1/3)$ is represented by a green ball, while the final equilibrium point $E_1 = ( 0.53112814, 0.1203633, 0.34850856)$ is rendered as a red triangle. Of course all over the path the constraint $e_1 + e_2 + e_3 = s$ holds.
[1]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[2]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[3]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[4]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[5]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[6]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[7]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[8]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[9]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (59)
  • HTML views (145)
  • Cited by (0)

Other articles
by authors

[Back to Top]