December  2018, 11(6): 1169-1177. doi: 10.3934/dcdss.2018066

Equilibrium locus of the flow on circular networks of cells

Depart. of Applied Mathematics, Holon Institute of Technology, Holon, Israel

Received  June 2016 Revised  September 2016 Published  June 2018

We perform a geometric study of the equilibrium locus of the flow that models the diffusion process over a circular network of cells. We prove that when considering the set of all possible values of the parameters, the equilibrium locus is a smooth manifold with corners, while for a given value of the parameters, it is an embedded smooth and connected curve. For different values of the parameters, the curves are all isomorphic.

Moreover, we show how to build a homotopy between different curves obtained for different values of the parameter set. This procedure allows the efficient computation of the equilibrium point for each value of some first integral of the system. This point would have been otherwise difficult to be computed for higher dimensions. We illustrate this construction by some numerical experiments.

Eventually, we show that when considering the parameters as inputs, one can easily bring the system asymptotically to any equilibrium point in the reachable set, which we also easily characterize.

Citation: Yirmeyahu J. Kaminski. Equilibrium locus of the flow on circular networks of cells. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1169-1177. doi: 10.3934/dcdss.2018066
References:
[1]

C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie, Bruxelles 1950, Paris, (1951), 29-55.   Google Scholar

[2]

D. Lazard and F. Rouillier, Solving parametric polynomial systems, Journal of Symbolic Computations, 42 (2007), 636-667.  doi: 10.1016/j.jsc.2007.01.007.  Google Scholar

[3]

J. Lee, Introduction to Smooth Manifolds, 2$^{nd}$, Springer, 2013.  Google Scholar

[4]

T. Y. Li, Numerical solution of multivariate polynomial systems by homotopy continuation methods, Acta Numerica, 6 (1997), 399-436.  doi: 10.1017/S0962492900002749.  Google Scholar

[5]

J. Mather, Notes on topological stability, Bulletin of the American Mathematical Society, 49 (2012), 475-506.  doi: 10.1090/S0273-0979-2012-01383-6.  Google Scholar

[6]

A. RavehY. ZaraiM. Margaliot and T. Ruller, Ribosome flow model on a ring, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12 (2015), 1429-1439.  doi: 10.1109/TCBB.2015.2418782.  Google Scholar

show all references

References:
[1]

C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie, Bruxelles 1950, Paris, (1951), 29-55.   Google Scholar

[2]

D. Lazard and F. Rouillier, Solving parametric polynomial systems, Journal of Symbolic Computations, 42 (2007), 636-667.  doi: 10.1016/j.jsc.2007.01.007.  Google Scholar

[3]

J. Lee, Introduction to Smooth Manifolds, 2$^{nd}$, Springer, 2013.  Google Scholar

[4]

T. Y. Li, Numerical solution of multivariate polynomial systems by homotopy continuation methods, Acta Numerica, 6 (1997), 399-436.  doi: 10.1017/S0962492900002749.  Google Scholar

[5]

J. Mather, Notes on topological stability, Bulletin of the American Mathematical Society, 49 (2012), 475-506.  doi: 10.1090/S0273-0979-2012-01383-6.  Google Scholar

[6]

A. RavehY. ZaraiM. Margaliot and T. Ruller, Ribosome flow model on a ring, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12 (2015), 1429-1439.  doi: 10.1109/TCBB.2015.2418782.  Google Scholar

Figure 1.  The homotopy path generated with the following parameters ${\mathit{\boldsymbol{\lambda}}}_1 = (1, 1, 1)$, ${\mathit{\boldsymbol{\lambda}}}_2 = ( 1.39328599, 8.30098374, 3.98355604)$ and $s = 1$. The first equilibrium point $E_0 = (1/3, 1/3, 1/3)$ is represented by a green ball, while the final equilibrium point $E_1 = ( 0.53112814, 0.1203633, 0.34850856)$ is rendered as a red triangle. Of course all over the path the constraint $e_1 + e_2 + e_3 = s$ holds.
[1]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[2]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[3]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[4]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[5]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[6]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[7]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[8]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[9]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (69)
  • HTML views (147)
  • Cited by (0)

Other articles
by authors

[Back to Top]