|
R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1991.
|
|
I. Area
, F. Ndaïrou
, J. J. Nieto
, C. J. Silva
and D. F. M. Torres
, Ebola model and optimal control with vaccination constraints, J. Ind. Manag. Optim., 14 (2018)
, 427-446.
doi: 10.3934/jimo.2017054.
|
|
E. R. Avakov
, The maximum principle for abnormal optimal control problems, Soviet Math. Dokl., 37 (1988)
, 231-234.
|
|
Z. Bai
and Y. Zhou
, Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contact rate, Nonlinear Anal. Real World Appl., 13 (2012)
, 1060-1068.
doi: 10.1016/j.nonrwa.2011.02.008.
|
|
A. Cori
, A. Valleron
, F. Carrat
, G. Scalia Tomba
, G. Thomas
and P. Boëlle
, Estimating influenza latency and infectious period durations using viral excretion data, Epidemics, 4 (2012)
, 132-138.
doi: 10.1016/j.epidem.2012.06.001.
|
|
C. Ding, N. Tao and Y. Zhu, A mathematical model of Zika virus and its optimal control, Proceedings of the 35th Chinese Control Conference, July 27-29, 2016, Chengdu, China. IEEE Xplore, (2016), 2642-2645.
doi: 10.1109/ChiCC.2016.7553763.
|
|
S. Edlund
, J. Kaufman
, J. Lessler
, J. Douglas
, M. Bromberg
, Z. Kaufman
, R. Bassal
, G. Chodick
, R. Marom
, V. Shalev
, Y. Mesika
, R. Ram
and A. Leventhal
, Comparing three basic models for seasonal influenza, Epidemics, 3 (2011)
, 135-142.
doi: 10.1016/j.epidem.2011.04.002.
|
|
K. R. Fister, S. Lenhart and J. S. McNally, Optimizing chemotherapy in an HIV model, Electron. J. Differential Equations, 1998 (1998), 12 pp.
|
|
W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, Berlin, 1975.
|
|
H. Gaff
and E. Schaefer
, Optimal control applied to vaccination and treatment strategies for various epidemiological models, Math. Biosci. Eng., 6 (2009)
, 469-492.
doi: 10.3934/mbe.2009.6.469.
|
|
S. Gao
, L. Chen
and Z. Teng
, Pulse vaccination of an SEIR epidemic model with time delay, Nonlinear Anal. Real World Appl., 9 (2008)
, 599-607.
doi: 10.1016/j.nonrwa.2006.12.004.
|
|
H. W. Hethcote
, M. A. Lewis
and P. van den Driessche
, An epidemiological model with a delay and a nonlinear incidence rate, J. Math. Biol., 27 (1989)
, 49-64.
doi: 10.1007/BF00276080.
|
|
H. W. Hethcote
and P. van den Driessche
, Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991)
, 271-287.
doi: 10.1007/BF00160539.
|
|
A. Korobeinikov
and P. K. Maini
, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 1 (2004)
, 57-60.
doi: 10.3934/mbe.2004.1.57.
|
|
T. Kuniya
and Y. Nakata
, Permanence and extinction for a nonautonomous SEIS epidemic model, Appl. Math. Comput., 218 (2012)
, 9321-9331.
doi: 10.1016/j.amc.2012.03.011.
|
|
A. P. Lemos-Paião
, C. J. Silva
and D. F. M. Torres
, An epidemic model for cholera with optimal control treatment, J. Comput. Appl. Math., 318 (2017)
, 168-180.
doi: 10.1016/j.cam.2016.11.002.
|
|
M. Y. Li
, H. L. Smith
and L. Wang
, Global dynamics an SEIR epidemic model with vertical transmission, SIAM J. Appl. Math., 62 (2001)
, 58-69.
doi: 10.1137/S0036139999359860.
|
|
W. M. Liu
, H. W. Hethcote
and S. A. Levin
, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987)
, 359-380.
doi: 10.1007/BF00277162.
|
|
M. Martcheva
, A non-autonomous multi-strain SIS epidemic model, J. Biol. Dyn., 3 (2009)
, 235-251.
doi: 10.1080/17513750802638712.
|
|
J. P. Mateus
and C. M. Silva
, A non-autonomous SEIRS model with general incidence rate, Appl. Math. Comput., 247 (2014)
, 169-189.
doi: 10.1016/j.amc.2014.08.078.
|
|
Y. Nakata
and T. Kuniya
, Global dynamics of a class of SEIRS epidemic models in a periodic environment, J. Math. Anal. Appl., 363 (2010)
, 230-237.
doi: 10.1016/j.jmaa.2009.08.027.
|
|
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt Interscience Publishers John Wiley & Sons, Inc. New York-London, 1962.
|
|
A. Rachah
and D. F. M. Torres
, Dynamics and optimal control of Ebola transmission, Math. Comput. Sci., 10 (2016)
, 331-342.
doi: 10.1007/s11786-016-0268-y.
|
|
S. Ruan
and W. Wang
, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differential Equations, 188 (2003)
, 135-163.
doi: 10.1016/S0022-0396(02)00089-X.
|
|
M. A. Safi and S. M. Garba, Global stability analysis of SEIR model with Holling type Ⅱ incidence function, Comput. Math. Methods Med., 2012 (2012), Art. ID 826052, 8 pp.
doi: 10.1155/2012/826052.
|
|
R. Shope
, Global climate change and infectious diseases, Environ. Health Perspect, 96 (1991)
, 171-174.
doi: 10.1289/ehp.9196171.
|
|
C. Silva
, H. Maurer
and D. F. M. Torres
, Optimal control of a tuberculosis model with state and control delays, Math. Biosci. Eng., 14 (2017)
, 321-337.
doi: 10.3934/mbe.2017021.
|
|
D. F. M. Torres
, Lipschitzian regularity of the minimizing trajectories for nonlinear optimal control problems, Math. Control Signals Systems, 16 (2003)
, 158-174.
doi: 10.1007/s00498-003-0132-x.
|
|
P. van den Driessche
, Deterministic Compartmental Models: Extensions of Basic Models, In: Mathematical epidemiology, vol. 1945 of Lecture Notes in Math., Springer, Berlin, (2008)
, 147-157.
doi: 10.1007/978-3-540-78911-6_5.
|
|
F. J. S. Wang
and W. R. Derrick
, On deterministic epidemic models, Bull. Inst. Math. Acad. Sinica, 6 (1978)
, 73-84.
|
|
A. Weber
, M. Weber
and P. Milligan
, Modeling epidemics caused by respiratory syncytial virus (RSV), Math. Biosci., 172 (2001)
, 95-113.
doi: 10.1016/S0025-5564(01)00066-9.
|
|
T. Zhang
, J. Liu
and Z. Teng
, Existence of positive periodic solutions of an SEIR model with periodic coefficients, Appl. Math., 57 (2012)
, 601-616.
doi: 10.1007/s10492-012-0036-5.
|
|
T. Zhang
and Z. Teng
, On a nonautonomous SEIRS model in epidemiology, Bull. Math. Biol., 69 (2007)
, 2537-2559.
doi: 10.1007/s11538-007-9231-z.
|
|
T. Zhang
and Z. Teng
, Extinction and permanence for a pulse vaccination delayed SEIRS epidemic model, Chaos Solitons Fractals, 39 (2009)
, 2411-2425.
doi: 10.1016/j.chaos.2007.07.012.
|
|
Y. Zhou
, D. Xiao
and Y. Li
, Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action, Chaos Solitons Fractals, 32 (2007)
, 1903-1915.
doi: 10.1016/j.chaos.2006.01.002.
|