-
Previous Article
Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems
- DCDS-S Home
- This Issue
-
Next Article
On ${\mathcal L}^1$ limit solutions in impulsive control
Recursive variational problems in nonreflexive Banach spaces with an infinite horizon: An existence result
Faculty of Economics, Hosei University, 4342, Aihara, Machida, Tokyo, 194-0298, Japan |
We investigate variational problems with recursive integral functionals governed by infinite-dimensional differential inclusions with an infinite horizon and present an existence result in the setting of nonreflexive Banach spaces. We find an optimal solution in a Sobolev space taking values in a Banach space under the Cesari type condition. We also investigate sufficient conditions for the existence of solutions to the initial value problem for the differential inclusion.
References:
[1] |
J. P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin, 1984.
doi: 10.1007/978-3-642-69512-4. |
[2] |
J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990. |
[3] |
E. J. Balder,
Existence of optimal solutions for control and variational problems with recursive objectives, J. Math. Anal. Appl., 178 (1993), 418-437.
doi: 10.1006/jmaa.1993.1316. |
[4] |
V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, 4$^{th}$ edition, Springer, Berlin, 2012.
doi: 10.1007/978-94-007-2247-7. |
[5] |
R. A. Becker and J. H. Boyd III,
Recursive utility and optimal capital accumulation. Ⅱ. Sensitivity and duality theory, Econom. Theory, 2 (1992), 547-563.
doi: 10.1007/BF01212476. |
[6] |
R. A. Becker, J. H. Boyd III and B. Y. Sung,
Recursive utility and optimal capital accumulation. Ⅰ. Existence, J. Econom. Theory, 47 (1989), 76-100.
doi: 10.1016/0022-0531(89)90104-X. |
[7] |
E. K. Boukas, A. Haurie and P. Michel,
An optimal control problem with a random stopping time, J. Optim. Theory Appl., 64 (1990), 471-480.
doi: 10.1007/BF00939419. |
[8] |
D. A. Carlson,
Infinite horizon optimal controls for problems governed by a Volterra integral equation with state dependent discount factor, J. Optim. Theory Appl., 66 (1990), 311-336.
doi: 10.1007/BF00939541. |
[9] |
D. A. Carlson, A. Haurie and A. Jabrane,
Existence of overtaking solutions to infinite dimensional control problems on unbounded time intervals, SIAM J. Control Optim., 25 (1987), 1517-1541.
doi: 10.1137/0325084. |
[10] |
D. A. Carlson, A. B. Haurie and A. Leizarowitz, Infinite Horizon Optimal Control, 2$^{nd}$ edition, Springer, Berlin, 1991.
doi: 10.1007/978-3-642-76755-5. |
[11] |
F. R. Chang,
Optimal growth and recursive utility: Phase diagram analysis, J. Optim. Theory Appl., 80 (1994), 425-439.
doi: 10.1007/BF02207773. |
[12] |
B.-L. Chen, K. Nishimura and K. Shimomura,
Time preference and two-country trade, Internat. J. Econom. Theory, 4 (2008), 29-52.
doi: 10.1111/j.1742-7363.2007.00067.x. |
[13] |
M. Das,
Optimal growth with decreasing marginal impatience, J. Econom. Dynam. Control, 27 (2003), 1881-1898.
doi: 10.1016/S0165-1889(02)00088-X. |
[14] |
K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
doi: 10.1007/978-3-662-00547-7. |
[15] |
K. Deimling,
Multivalued differential equations on closed sets, Differential Integral Equations, 1 (1988), 23-30.
|
[16] |
K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin, 1992.
doi: 10.1515/9783110874228. |
[17] |
J. Diestel, W. M. Ruess and W. Schachermayer,
Weak compactness in $L^1(μ,X)$, Proc. Amer. Math. Soc., 118 (1993), 447-453.
doi: 10.2307/2160321. |
[18] |
J.-P. Drugeon,
Impatience and long-run growth, J. Econom. Dynam. Control, 20 (1996), 281-313.
doi: 10.1016/0165-1889(94)00852-3. |
[19] |
J.-P. Drugeon and B. Wigniolle,
On time preference, rational addiction and utility satiation, J. Math. Econom., 43 (2007), 279-286.
doi: 10.1016/j.jmateco.2006.06.010. |
[20] |
J. Dugundji, Topology, Allyn and Bacon, Boston, 1966. |
[21] |
N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, John Wiley & Sons, New York, 1958. Google Scholar |
[22] |
L. G. Epstein,
A simple dynamic general equilibrium model, J. Econom. Theory, 41 (1987), 68-95.
doi: 10.1016/0022-0531(87)90006-8. |
[23] |
L. G. Epstein,
The global stability of efficient intertemporal allocations, Econometrica, 55 (1987), 329-355.
doi: 10.2307/1913239. |
[24] |
L. G. Epstein and A. Hynes, The rate of time preference and dynamic economic analysis, J. Political Econom., 91 (1983), 611-635. Google Scholar |
[25] |
S. Erol, C. Le Van and C. Saglam,
Existence, optimality and dynamics of equilibria with endogenous time preference, J. Math. Econom., 47 (2011), 170-179.
doi: 10.1016/j.jmateco.2010.12.006. |
[26] |
H. O. Fattorini, Infinite Dimensional Optimization and Control Theory, Cambridge Univ. Press, Cambridge, 1999.
doi: 10.1017/CBO9780511574795. |
[27] |
K. Iwai,
Optimal economic growth and stationary ordinal utility-a Fisherian approach, J. Econom. Theory, 5 (1972), 121-151.
doi: 10.1016/0022-0531(72)90122-6. |
[28] |
Y. K |
[29] |
T. C. Koopmans,
Stationary ordinal utility and impatience, Econometrica, 28 (1960), 287-309.
doi: 10.2307/1907722. |
[30] |
X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995.
doi: 10.1007/978-1-4612-4260-4. |
[31] |
T. Maruyama,
A generalization of the weak convergence theorem in Sobolev spaces with applications to differential inclusions in a Banach space, Proc. Japan Acad. Ser. A Math. Sci., 77 (2001), 5-10.
doi: 10.3792/pjaa.77.5. |
[32] |
M. Nagumo,
Über die lage der integralkurven gewöhnlicher differentialgleichungen, Proc. Phys. Math. Soc. Japan 3rd. Ser., 24 (1942), 551-559.
|
[33] |
A. Naiary,
Asymptotic behavior and optimal properties of a consumption-investment model with variable time preference, J. Econom. Dynam. Control, 7 (1984), 283-313.
doi: 10.1016/0165-1889(84)90021-6. |
[34] |
M. Obstfeld,
Intertemporal dependence, impatience, and dynamics, J. Monetary Econom., 26 (1990), 45-75.
doi: 10.3386/w3028. |
[35] |
T. Palivos, P. Wang and J. Zhang,
On the existence of balanced growth equilibrium, Internat. Econom. Rev., 38 (1997), 205-224.
doi: 10.2307/2527415. |
[36] |
M. Petrakis and J. J. Uhl, Jr., Differentiation in Banach spaces, in Proceedings of the Analysis Conference, Singapore 1986, (eds. S. T. L. Choy, J. P. Jesudason and P. Y. Lee), North-Holland, 150 (1988), 219-241.
doi: 10.1016/S0304-0208(08)71340-9. |
[37] |
H. E. Ryder, Jr. and G. M. Heal, Optimal growth with intertemporally dependent preferences, Rev. Econom. Stud., 40 (1973), 1-31. Google Scholar |
[38] |
N. Sagara,
Optimal growth with recursive utility: An existence result without convexity assumptions, J. Optim. Theory Appl., 109 (2001), 371-383.
doi: 10.1023/A:1017518523055. |
[39] |
N. Sagara,
Nonconvex variational problem with recursive integral functionals in Sobolev spaces: Existence and representation, J. Math. Anal. Appl., 327 (2007), 203-219.
doi: 10.1016/j.jmaa.2006.04.012. |
[40] |
S. Shi and L. G. Epstein,
Habits and time preference, Internat. Econom. Rev., 34 (1993), 61-84.
doi: 10.2307/2526950. |
[41] |
G. Sorger,
Maximum principle for control problems with uncertain horizon and variable discount rate, J. Optim. Theory Appl., 70 (1991), 607-618.
doi: 10.1007/BF00941305. |
[42] |
H. Uzawa, Time preferences, the consumption function, and optimum asset holdings, in Value, Capital, and Growth: Papers in Honour of Sir John Hicks (ed. J. N. Wolfe), Edinburgh University Press, (1989), 485-504.
doi: 10.1017/CBO9780511664496.005. |
[43] |
A. J. Zaslavski,
Existence and structure of optimal solutions of infinite-dimensional control problems, Appl. Math. Optim., 42 (2000), 291-313.
doi: 10.1007/s002450010011. |
show all references
References:
[1] |
J. P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin, 1984.
doi: 10.1007/978-3-642-69512-4. |
[2] |
J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990. |
[3] |
E. J. Balder,
Existence of optimal solutions for control and variational problems with recursive objectives, J. Math. Anal. Appl., 178 (1993), 418-437.
doi: 10.1006/jmaa.1993.1316. |
[4] |
V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, 4$^{th}$ edition, Springer, Berlin, 2012.
doi: 10.1007/978-94-007-2247-7. |
[5] |
R. A. Becker and J. H. Boyd III,
Recursive utility and optimal capital accumulation. Ⅱ. Sensitivity and duality theory, Econom. Theory, 2 (1992), 547-563.
doi: 10.1007/BF01212476. |
[6] |
R. A. Becker, J. H. Boyd III and B. Y. Sung,
Recursive utility and optimal capital accumulation. Ⅰ. Existence, J. Econom. Theory, 47 (1989), 76-100.
doi: 10.1016/0022-0531(89)90104-X. |
[7] |
E. K. Boukas, A. Haurie and P. Michel,
An optimal control problem with a random stopping time, J. Optim. Theory Appl., 64 (1990), 471-480.
doi: 10.1007/BF00939419. |
[8] |
D. A. Carlson,
Infinite horizon optimal controls for problems governed by a Volterra integral equation with state dependent discount factor, J. Optim. Theory Appl., 66 (1990), 311-336.
doi: 10.1007/BF00939541. |
[9] |
D. A. Carlson, A. Haurie and A. Jabrane,
Existence of overtaking solutions to infinite dimensional control problems on unbounded time intervals, SIAM J. Control Optim., 25 (1987), 1517-1541.
doi: 10.1137/0325084. |
[10] |
D. A. Carlson, A. B. Haurie and A. Leizarowitz, Infinite Horizon Optimal Control, 2$^{nd}$ edition, Springer, Berlin, 1991.
doi: 10.1007/978-3-642-76755-5. |
[11] |
F. R. Chang,
Optimal growth and recursive utility: Phase diagram analysis, J. Optim. Theory Appl., 80 (1994), 425-439.
doi: 10.1007/BF02207773. |
[12] |
B.-L. Chen, K. Nishimura and K. Shimomura,
Time preference and two-country trade, Internat. J. Econom. Theory, 4 (2008), 29-52.
doi: 10.1111/j.1742-7363.2007.00067.x. |
[13] |
M. Das,
Optimal growth with decreasing marginal impatience, J. Econom. Dynam. Control, 27 (2003), 1881-1898.
doi: 10.1016/S0165-1889(02)00088-X. |
[14] |
K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
doi: 10.1007/978-3-662-00547-7. |
[15] |
K. Deimling,
Multivalued differential equations on closed sets, Differential Integral Equations, 1 (1988), 23-30.
|
[16] |
K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin, 1992.
doi: 10.1515/9783110874228. |
[17] |
J. Diestel, W. M. Ruess and W. Schachermayer,
Weak compactness in $L^1(μ,X)$, Proc. Amer. Math. Soc., 118 (1993), 447-453.
doi: 10.2307/2160321. |
[18] |
J.-P. Drugeon,
Impatience and long-run growth, J. Econom. Dynam. Control, 20 (1996), 281-313.
doi: 10.1016/0165-1889(94)00852-3. |
[19] |
J.-P. Drugeon and B. Wigniolle,
On time preference, rational addiction and utility satiation, J. Math. Econom., 43 (2007), 279-286.
doi: 10.1016/j.jmateco.2006.06.010. |
[20] |
J. Dugundji, Topology, Allyn and Bacon, Boston, 1966. |
[21] |
N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, John Wiley & Sons, New York, 1958. Google Scholar |
[22] |
L. G. Epstein,
A simple dynamic general equilibrium model, J. Econom. Theory, 41 (1987), 68-95.
doi: 10.1016/0022-0531(87)90006-8. |
[23] |
L. G. Epstein,
The global stability of efficient intertemporal allocations, Econometrica, 55 (1987), 329-355.
doi: 10.2307/1913239. |
[24] |
L. G. Epstein and A. Hynes, The rate of time preference and dynamic economic analysis, J. Political Econom., 91 (1983), 611-635. Google Scholar |
[25] |
S. Erol, C. Le Van and C. Saglam,
Existence, optimality and dynamics of equilibria with endogenous time preference, J. Math. Econom., 47 (2011), 170-179.
doi: 10.1016/j.jmateco.2010.12.006. |
[26] |
H. O. Fattorini, Infinite Dimensional Optimization and Control Theory, Cambridge Univ. Press, Cambridge, 1999.
doi: 10.1017/CBO9780511574795. |
[27] |
K. Iwai,
Optimal economic growth and stationary ordinal utility-a Fisherian approach, J. Econom. Theory, 5 (1972), 121-151.
doi: 10.1016/0022-0531(72)90122-6. |
[28] |
Y. K |
[29] |
T. C. Koopmans,
Stationary ordinal utility and impatience, Econometrica, 28 (1960), 287-309.
doi: 10.2307/1907722. |
[30] |
X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995.
doi: 10.1007/978-1-4612-4260-4. |
[31] |
T. Maruyama,
A generalization of the weak convergence theorem in Sobolev spaces with applications to differential inclusions in a Banach space, Proc. Japan Acad. Ser. A Math. Sci., 77 (2001), 5-10.
doi: 10.3792/pjaa.77.5. |
[32] |
M. Nagumo,
Über die lage der integralkurven gewöhnlicher differentialgleichungen, Proc. Phys. Math. Soc. Japan 3rd. Ser., 24 (1942), 551-559.
|
[33] |
A. Naiary,
Asymptotic behavior and optimal properties of a consumption-investment model with variable time preference, J. Econom. Dynam. Control, 7 (1984), 283-313.
doi: 10.1016/0165-1889(84)90021-6. |
[34] |
M. Obstfeld,
Intertemporal dependence, impatience, and dynamics, J. Monetary Econom., 26 (1990), 45-75.
doi: 10.3386/w3028. |
[35] |
T. Palivos, P. Wang and J. Zhang,
On the existence of balanced growth equilibrium, Internat. Econom. Rev., 38 (1997), 205-224.
doi: 10.2307/2527415. |
[36] |
M. Petrakis and J. J. Uhl, Jr., Differentiation in Banach spaces, in Proceedings of the Analysis Conference, Singapore 1986, (eds. S. T. L. Choy, J. P. Jesudason and P. Y. Lee), North-Holland, 150 (1988), 219-241.
doi: 10.1016/S0304-0208(08)71340-9. |
[37] |
H. E. Ryder, Jr. and G. M. Heal, Optimal growth with intertemporally dependent preferences, Rev. Econom. Stud., 40 (1973), 1-31. Google Scholar |
[38] |
N. Sagara,
Optimal growth with recursive utility: An existence result without convexity assumptions, J. Optim. Theory Appl., 109 (2001), 371-383.
doi: 10.1023/A:1017518523055. |
[39] |
N. Sagara,
Nonconvex variational problem with recursive integral functionals in Sobolev spaces: Existence and representation, J. Math. Anal. Appl., 327 (2007), 203-219.
doi: 10.1016/j.jmaa.2006.04.012. |
[40] |
S. Shi and L. G. Epstein,
Habits and time preference, Internat. Econom. Rev., 34 (1993), 61-84.
doi: 10.2307/2526950. |
[41] |
G. Sorger,
Maximum principle for control problems with uncertain horizon and variable discount rate, J. Optim. Theory Appl., 70 (1991), 607-618.
doi: 10.1007/BF00941305. |
[42] |
H. Uzawa, Time preferences, the consumption function, and optimum asset holdings, in Value, Capital, and Growth: Papers in Honour of Sir John Hicks (ed. J. N. Wolfe), Edinburgh University Press, (1989), 485-504.
doi: 10.1017/CBO9780511664496.005. |
[43] |
A. J. Zaslavski,
Existence and structure of optimal solutions of infinite-dimensional control problems, Appl. Math. Optim., 42 (2000), 291-313.
doi: 10.1007/s002450010011. |
[1] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[2] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[3] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[4] |
Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021001 |
[5] |
Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303 |
[6] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[7] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[8] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[9] |
Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028 |
[10] |
Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250 |
[11] |
Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260 |
[12] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286 |
[13] |
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365 |
[14] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
[15] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[16] |
Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230 |
[17] |
Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048 |
[18] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[19] |
Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268 |
[20] |
Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021027 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]