• Previous Article
    A study of structure-exploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints
  • DCDS-S Home
  • This Issue
  • Next Article
    Recursive variational problems in nonreflexive Banach spaces with an infinite horizon: An existence result
December  2018, 11(6): 1233-1258. doi: 10.3934/dcdss.2018070

Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems

Escola de Matemática Aplicada, Fundação Getulio Vargas, Praia de Botafogo 190, 22250-900 Rio de Janeiro - RJ, Brazil

* Corresponding author: M. Soledad Aronna

Received  March 2017 Revised  June 2017 Published  June 2018

Fund Project: This work was supported by the European Union under the 7th Framework Programme FP7-PEOPLE-2010-ITN Grant agreement number 264735-SADCO.

In this article we study optimal control problems for systems that are affine with respect to some of the control variables and nonlinear in relation to the others. We consider finitely many equality and inequality constraints on the initial and final values of the state. We investigate singular optimal solutions for this class of problems, for which we obtain second order necessary and sufficient conditions for weak optimality in integral form. We also derive Goh pointwise necessary optimality conditions. We show an example to illustrate the results.

Citation: M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070
References:
[1]

R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.  Google Scholar

[2]

A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-06404-7.  Google Scholar

[3]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, Optimal Control, Nauka, Moscow, 1979. [in Russian].  Google Scholar

[4]

M. S. Aronna, Convergence of the shooting algorithm for singular optimal control problems, in Proceedings of the IEEE European Control Conference (ECC), July 2013, 215–220. Google Scholar

[5]

M. S. Aronna, Singular Solutions in Optimal Control: Second Order Conditions and a Shooting Algorithm, Technical Report, Inria RR-7764, 2013. arXiv: 1210.7425, Inria RR-7764. Google Scholar

[6]

M. S. AronnaJ. F. BonnansA. V. Dmitruk and P. A. Lotito, Quadratic order conditions for bang-singular extremals, Numer. Algebra Control Optim., 2 (2012), 511-546.  doi: 10.3934/naco.2012.2.511.  Google Scholar

[7]

D. M. Azimov, Active sections of rocket trajectories. A survey of research, Avtomat. i Telemekh., 11 (2005), 14-34.  doi: 10.1007/s10513-005-0207-x.  Google Scholar

[8]

D. J. Bell and D. H. Jacobson, Singular Optimal Control Problems, Academic Press, 1975.  Google Scholar

[9]

D. S. Bernstein and V. Zeidan, The singular linear-quadratic regulator problem and the Goh-Riccati equation, Proceedings of the IEEE Conference on Decision and Control, 1 (1990), 334-339.  doi: 10.1109/CDC.1990.203608.  Google Scholar

[10]

G. A. Bliss, Lectures on the Calculus of Variations, University of Chicago Press, Chicago, Illinois, 1946.  Google Scholar

[11]

F. BonnansJ. Laurent-VarinP. Martinon and E. Trélat, Numerical study of optimal trajectories with singular arcs for an Ariane 5 launcher, J. Guidance Control Dynam., 32 (2009), 51-55.   Google Scholar

[12]

J. F. Bonnans, Optimisation Continue, Dunod, 2006. Google Scholar

[13]

H. J. BortolossiM. V. Pereira and C. Tomei, Optimal hydrothermal scheduling with variable production coefficient, Math. Methods Oper. Res., 55 (2002), 11-36.  doi: 10.1007/s001860200174.  Google Scholar

[14]

H. Brézis, Analyse Fonctionnelle, Masson, Paris, 1983.  Google Scholar

[15]

A. E. Bryson, Jr. and Y. C. Ho, Applied Optimal Control, Hemisphere Publishing Corp. Washington, D. C., 1975. Optimization, estimation, and control, Revised printing.  Google Scholar

[16]

D. I. ChoP. L. Abad and M. Parlar, Optimal production and maintenance decisions when a system experience age-dependent deterioration, Optimal Control Appl. Methods, 14 (1993), 153-167.  doi: 10.1002/oca.4660140302.  Google Scholar

[17]

A. V. Dmitruk, Quadratic conditions for a weak minimum fo control problems, Soviet Math. Doklady, 18 (1977).   Google Scholar

[18]

A. V. Dmitruk, Jacobi-type conditions for the problem of Bolza with inequalities, Math. Notes, 35 (1984), 427-435.   Google Scholar

[19]

A. V. Dmitruk, Quadratic order conditions for a Pontryagin minimum in an optimal control problem linear in the control, Math. USSR Izvestiya, 28 (1987), 275-303.   Google Scholar

[20]

A. V. Dmitruk, Jacobi type conditions for singular extremals, Control & Cybernetics, 37 (2008), 285-306.   Google Scholar

[21]

A. V. Dmitruk, Quadratic order optimality conditions for extremals completely singular in part of controls, in Operations Research Proceedings, Selected Papers of the Annual International Conference of the German Operations Research Society, (2011), 341–346. doi: 10.1007/978-3-642-20009-0_54.  Google Scholar

[22]

A. V. Dmitruk and K. K. Shishov, Analysis of a quadratic functional with a partly singular Legendre condition, Moscow University Comput. Math. and Cybernetics, 34 (2010), 56-65.  doi: 10.3103/S0278641910020020.  Google Scholar

[23]

H. Frankowska and D. Tonon, Pointwise second-order necessary optimality conditions for the Mayer problem with control constraints, SIAM J. Control Optim., 51 (2013), 3814-3843.  doi: 10.1137/130906799.  Google Scholar

[24]

R. H. Goddard, A Method of Reaching Extreme Altitudes, Smithsonian Miscellaneous Collections, 71(2), Smithsonian Institution, City of Washington, 1919. Google Scholar

[25]

B. S. Goh, Necessary conditions for singular extremals involving multiple control variables, J. SIAM Control, 4 (1966), 716-731.  doi: 10.1137/0304052.  Google Scholar

[26]

B. S. Goh, Necessary Conditions for the Singular Extremals in the Calculus of Variations, PhD thesis, University of Canterbury, 1966. Google Scholar

[27]

B. S. Goh, The second variation for the singular Bolza problem, J. SIAM Control, 4 (1966), 309-325.  doi: 10.1137/0304026.  Google Scholar

[28]

B. S. Goh, Optimal singular control for multi-input linear systems, J. Math. Anal. Appl., 20 (1967), 534-539.  doi: 10.1016/0022-247X(67)90079-0.  Google Scholar

[29]

B. S. Goh, Optimal singular rocket and aircraft trajectories, in Control and Decision Conference, CCDC 2008, (2008), 1531–1536. doi: 10.1109/CCDC.2008.4597574.  Google Scholar

[30]

M. R. Hestenes, Applications of the theory of quadratic forms in Hilbert space to the calculus of variations, Pacific J. Math., 1 (1951), 525-581.  doi: 10.2140/pjm.1951.1.525.  Google Scholar

[31]

D. G. Hull, Optimal guidance for quasi-planar lunar ascent, J. Optim. Theory Appl., 151 (2011), 353-372.  doi: 10.1007/s10957-011-9884-5.  Google Scholar

[32]

S. Kurcyusz and J. Zowe, Regularity and stability for the mathematical programming problem in Banach spaces, Applied Mathematics and Optimization, 5 (1979), 49-62.  doi: 10.1007/BF01442543.  Google Scholar

[33]

D. F. Lawden, Optimal Trajectories for Space Navigation, Butterworths, London, 1963.  Google Scholar

[34]

E. S. LevitinA. A. Milyutin and N. P. Osmolovskii, Theory of higher-order conditions in smooth constrained extremal problems, Theoretical and Applied Optimal Control Problems, (1985), 4-40.   Google Scholar

[35]

O. Mangasarian and S. Fromovitz, The Fritz-John necessary optimality conditions in the presence of equality and inequality constraints, J. Math. Anal. Appl., 17 (1967), 37-47.  doi: 10.1016/0022-247X(67)90163-1.  Google Scholar

[36]

H. Maurer, J.-H. Kim and G. Vossen, On a state-constrained control problem in optimal production and maintenance, in Optimal Control and Dynamic Games (eds. C. Deissenberg, R. Hartl, H. M. Amman and B. Rustem), Advances in Computational Management Science, 7, Springer, 2005,289–308. doi: 10.1007/0-387-25805-1_17.  Google Scholar

[37]

H. Maurer and N. P. Osmolovskii, Second order sufficient optimality conditions for a control problem with continuous and bang-bang control components: Riccati approach, in System Modeling and Optimization, IFIP Adv. Inf. Commun. Technol., 312, Springer, Berlin, 2009,411–429. doi: 10.1007/978-3-642-04802-9_24.  Google Scholar

[38]

A. A. Milyutin, On quadratic conditions for an extremum in smooth problems with a finite-dimensional range, Methods of the Theory of Extremal Problems in Economics, (1981), 138-177.   Google Scholar

[39]

A. A. Milyutin and N. P. Osmolovskii, Calculus of Variations and Optimal Control, American Mathematical Society, 1998.  Google Scholar

[40]

H. J. Oberle, On the numerical computation of minimum-fuel, Earth-Mars transfer, J. Optim. Theory Appl., 22 (1977), 447-453.  doi: 10.1007/BF00932866.  Google Scholar

[41]

H. J. Oberle, Numerical computation of singular control functions in trajectory optimization problems, J. Guidance Control Dynam., 13 (1990), 153-159.  doi: 10.2514/3.20529.  Google Scholar

[42]

R. E. O'Malley Jr., Partially Singular Control Problems as Singular Singular-Perturbation Problems, Technical Report, Arizona Univ. Tucson, Department of Mathematics, 1977. Google Scholar

[43]

L. Poggiolini and G. Stefani, Minimum time optimality of a partially singular arc: Second order conditions, in Lagrangian and Hamiltonian Methods for Nonlinear Control 2006, Lecture Notes in Control and Inform. Sci., 366, Springer, Berlin, 2007,281–291. doi: 10.1007/978-3-540-73890-9_22.  Google Scholar

[44]

D. J. W. Ruxton and D. J. Bell, Junction times in singular optimal control, Applied Mathematics and Computation, 70 (1995), 143-154.  doi: 10.1016/0096-3003(94)00115-K.  Google Scholar

[45]

A. Shapiro. On duality theory of conic linear problems, in Semi-Infinite Programming (Alicante, 1999), Nonconvex Optim. Appl., 57, Kluwer Acad. Publ., Dordrecht, 2001,135–165. doi: 10.1007/978-1-4757-3403-4_7.  Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.  Google Scholar

[2]

A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-06404-7.  Google Scholar

[3]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, Optimal Control, Nauka, Moscow, 1979. [in Russian].  Google Scholar

[4]

M. S. Aronna, Convergence of the shooting algorithm for singular optimal control problems, in Proceedings of the IEEE European Control Conference (ECC), July 2013, 215–220. Google Scholar

[5]

M. S. Aronna, Singular Solutions in Optimal Control: Second Order Conditions and a Shooting Algorithm, Technical Report, Inria RR-7764, 2013. arXiv: 1210.7425, Inria RR-7764. Google Scholar

[6]

M. S. AronnaJ. F. BonnansA. V. Dmitruk and P. A. Lotito, Quadratic order conditions for bang-singular extremals, Numer. Algebra Control Optim., 2 (2012), 511-546.  doi: 10.3934/naco.2012.2.511.  Google Scholar

[7]

D. M. Azimov, Active sections of rocket trajectories. A survey of research, Avtomat. i Telemekh., 11 (2005), 14-34.  doi: 10.1007/s10513-005-0207-x.  Google Scholar

[8]

D. J. Bell and D. H. Jacobson, Singular Optimal Control Problems, Academic Press, 1975.  Google Scholar

[9]

D. S. Bernstein and V. Zeidan, The singular linear-quadratic regulator problem and the Goh-Riccati equation, Proceedings of the IEEE Conference on Decision and Control, 1 (1990), 334-339.  doi: 10.1109/CDC.1990.203608.  Google Scholar

[10]

G. A. Bliss, Lectures on the Calculus of Variations, University of Chicago Press, Chicago, Illinois, 1946.  Google Scholar

[11]

F. BonnansJ. Laurent-VarinP. Martinon and E. Trélat, Numerical study of optimal trajectories with singular arcs for an Ariane 5 launcher, J. Guidance Control Dynam., 32 (2009), 51-55.   Google Scholar

[12]

J. F. Bonnans, Optimisation Continue, Dunod, 2006. Google Scholar

[13]

H. J. BortolossiM. V. Pereira and C. Tomei, Optimal hydrothermal scheduling with variable production coefficient, Math. Methods Oper. Res., 55 (2002), 11-36.  doi: 10.1007/s001860200174.  Google Scholar

[14]

H. Brézis, Analyse Fonctionnelle, Masson, Paris, 1983.  Google Scholar

[15]

A. E. Bryson, Jr. and Y. C. Ho, Applied Optimal Control, Hemisphere Publishing Corp. Washington, D. C., 1975. Optimization, estimation, and control, Revised printing.  Google Scholar

[16]

D. I. ChoP. L. Abad and M. Parlar, Optimal production and maintenance decisions when a system experience age-dependent deterioration, Optimal Control Appl. Methods, 14 (1993), 153-167.  doi: 10.1002/oca.4660140302.  Google Scholar

[17]

A. V. Dmitruk, Quadratic conditions for a weak minimum fo control problems, Soviet Math. Doklady, 18 (1977).   Google Scholar

[18]

A. V. Dmitruk, Jacobi-type conditions for the problem of Bolza with inequalities, Math. Notes, 35 (1984), 427-435.   Google Scholar

[19]

A. V. Dmitruk, Quadratic order conditions for a Pontryagin minimum in an optimal control problem linear in the control, Math. USSR Izvestiya, 28 (1987), 275-303.   Google Scholar

[20]

A. V. Dmitruk, Jacobi type conditions for singular extremals, Control & Cybernetics, 37 (2008), 285-306.   Google Scholar

[21]

A. V. Dmitruk, Quadratic order optimality conditions for extremals completely singular in part of controls, in Operations Research Proceedings, Selected Papers of the Annual International Conference of the German Operations Research Society, (2011), 341–346. doi: 10.1007/978-3-642-20009-0_54.  Google Scholar

[22]

A. V. Dmitruk and K. K. Shishov, Analysis of a quadratic functional with a partly singular Legendre condition, Moscow University Comput. Math. and Cybernetics, 34 (2010), 56-65.  doi: 10.3103/S0278641910020020.  Google Scholar

[23]

H. Frankowska and D. Tonon, Pointwise second-order necessary optimality conditions for the Mayer problem with control constraints, SIAM J. Control Optim., 51 (2013), 3814-3843.  doi: 10.1137/130906799.  Google Scholar

[24]

R. H. Goddard, A Method of Reaching Extreme Altitudes, Smithsonian Miscellaneous Collections, 71(2), Smithsonian Institution, City of Washington, 1919. Google Scholar

[25]

B. S. Goh, Necessary conditions for singular extremals involving multiple control variables, J. SIAM Control, 4 (1966), 716-731.  doi: 10.1137/0304052.  Google Scholar

[26]

B. S. Goh, Necessary Conditions for the Singular Extremals in the Calculus of Variations, PhD thesis, University of Canterbury, 1966. Google Scholar

[27]

B. S. Goh, The second variation for the singular Bolza problem, J. SIAM Control, 4 (1966), 309-325.  doi: 10.1137/0304026.  Google Scholar

[28]

B. S. Goh, Optimal singular control for multi-input linear systems, J. Math. Anal. Appl., 20 (1967), 534-539.  doi: 10.1016/0022-247X(67)90079-0.  Google Scholar

[29]

B. S. Goh, Optimal singular rocket and aircraft trajectories, in Control and Decision Conference, CCDC 2008, (2008), 1531–1536. doi: 10.1109/CCDC.2008.4597574.  Google Scholar

[30]

M. R. Hestenes, Applications of the theory of quadratic forms in Hilbert space to the calculus of variations, Pacific J. Math., 1 (1951), 525-581.  doi: 10.2140/pjm.1951.1.525.  Google Scholar

[31]

D. G. Hull, Optimal guidance for quasi-planar lunar ascent, J. Optim. Theory Appl., 151 (2011), 353-372.  doi: 10.1007/s10957-011-9884-5.  Google Scholar

[32]

S. Kurcyusz and J. Zowe, Regularity and stability for the mathematical programming problem in Banach spaces, Applied Mathematics and Optimization, 5 (1979), 49-62.  doi: 10.1007/BF01442543.  Google Scholar

[33]

D. F. Lawden, Optimal Trajectories for Space Navigation, Butterworths, London, 1963.  Google Scholar

[34]

E. S. LevitinA. A. Milyutin and N. P. Osmolovskii, Theory of higher-order conditions in smooth constrained extremal problems, Theoretical and Applied Optimal Control Problems, (1985), 4-40.   Google Scholar

[35]

O. Mangasarian and S. Fromovitz, The Fritz-John necessary optimality conditions in the presence of equality and inequality constraints, J. Math. Anal. Appl., 17 (1967), 37-47.  doi: 10.1016/0022-247X(67)90163-1.  Google Scholar

[36]

H. Maurer, J.-H. Kim and G. Vossen, On a state-constrained control problem in optimal production and maintenance, in Optimal Control and Dynamic Games (eds. C. Deissenberg, R. Hartl, H. M. Amman and B. Rustem), Advances in Computational Management Science, 7, Springer, 2005,289–308. doi: 10.1007/0-387-25805-1_17.  Google Scholar

[37]

H. Maurer and N. P. Osmolovskii, Second order sufficient optimality conditions for a control problem with continuous and bang-bang control components: Riccati approach, in System Modeling and Optimization, IFIP Adv. Inf. Commun. Technol., 312, Springer, Berlin, 2009,411–429. doi: 10.1007/978-3-642-04802-9_24.  Google Scholar

[38]

A. A. Milyutin, On quadratic conditions for an extremum in smooth problems with a finite-dimensional range, Methods of the Theory of Extremal Problems in Economics, (1981), 138-177.   Google Scholar

[39]

A. A. Milyutin and N. P. Osmolovskii, Calculus of Variations and Optimal Control, American Mathematical Society, 1998.  Google Scholar

[40]

H. J. Oberle, On the numerical computation of minimum-fuel, Earth-Mars transfer, J. Optim. Theory Appl., 22 (1977), 447-453.  doi: 10.1007/BF00932866.  Google Scholar

[41]

H. J. Oberle, Numerical computation of singular control functions in trajectory optimization problems, J. Guidance Control Dynam., 13 (1990), 153-159.  doi: 10.2514/3.20529.  Google Scholar

[42]

R. E. O'Malley Jr., Partially Singular Control Problems as Singular Singular-Perturbation Problems, Technical Report, Arizona Univ. Tucson, Department of Mathematics, 1977. Google Scholar

[43]

L. Poggiolini and G. Stefani, Minimum time optimality of a partially singular arc: Second order conditions, in Lagrangian and Hamiltonian Methods for Nonlinear Control 2006, Lecture Notes in Control and Inform. Sci., 366, Springer, Berlin, 2007,281–291. doi: 10.1007/978-3-540-73890-9_22.  Google Scholar

[44]

D. J. W. Ruxton and D. J. Bell, Junction times in singular optimal control, Applied Mathematics and Computation, 70 (1995), 143-154.  doi: 10.1016/0096-3003(94)00115-K.  Google Scholar

[45]

A. Shapiro. On duality theory of conic linear problems, in Semi-Infinite Programming (Alicante, 1999), Nonconvex Optim. Appl., 57, Kluwer Acad. Publ., Dordrecht, 2001,135–165. doi: 10.1007/978-1-4757-3403-4_7.  Google Scholar

[1]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[2]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[3]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[4]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[5]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[6]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[7]

Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215

[8]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[9]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[10]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[11]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[12]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[13]

Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021022

[14]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

[15]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[16]

Jaouad Danane. Optimal control of viral infection model with saturated infection rate. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 363-375. doi: 10.3934/naco.2020031

[17]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[18]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[19]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[20]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (125)
  • HTML views (162)
  • Cited by (0)

Other articles
by authors

[Back to Top]