• Previous Article
    A study of structure-exploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints
  • DCDS-S Home
  • This Issue
  • Next Article
    Recursive variational problems in nonreflexive Banach spaces with an infinite horizon: An existence result
December  2018, 11(6): 1233-1258. doi: 10.3934/dcdss.2018070

Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems

Escola de Matemática Aplicada, Fundação Getulio Vargas, Praia de Botafogo 190, 22250-900 Rio de Janeiro - RJ, Brazil

* Corresponding author: M. Soledad Aronna

Received  March 2017 Revised  June 2017 Published  June 2018

Fund Project: This work was supported by the European Union under the 7th Framework Programme FP7-PEOPLE-2010-ITN Grant agreement number 264735-SADCO.

In this article we study optimal control problems for systems that are affine with respect to some of the control variables and nonlinear in relation to the others. We consider finitely many equality and inequality constraints on the initial and final values of the state. We investigate singular optimal solutions for this class of problems, for which we obtain second order necessary and sufficient conditions for weak optimality in integral form. We also derive Goh pointwise necessary optimality conditions. We show an example to illustrate the results.

Citation: M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070
References:
[1]

R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.  Google Scholar

[2]

A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-06404-7.  Google Scholar

[3]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, Optimal Control, Nauka, Moscow, 1979. [in Russian].  Google Scholar

[4]

M. S. Aronna, Convergence of the shooting algorithm for singular optimal control problems, in Proceedings of the IEEE European Control Conference (ECC), July 2013, 215–220. Google Scholar

[5]

M. S. Aronna, Singular Solutions in Optimal Control: Second Order Conditions and a Shooting Algorithm, Technical Report, Inria RR-7764, 2013. arXiv: 1210.7425, Inria RR-7764. Google Scholar

[6]

M. S. AronnaJ. F. BonnansA. V. Dmitruk and P. A. Lotito, Quadratic order conditions for bang-singular extremals, Numer. Algebra Control Optim., 2 (2012), 511-546.  doi: 10.3934/naco.2012.2.511.  Google Scholar

[7]

D. M. Azimov, Active sections of rocket trajectories. A survey of research, Avtomat. i Telemekh., 11 (2005), 14-34.  doi: 10.1007/s10513-005-0207-x.  Google Scholar

[8]

D. J. Bell and D. H. Jacobson, Singular Optimal Control Problems, Academic Press, 1975.  Google Scholar

[9]

D. S. Bernstein and V. Zeidan, The singular linear-quadratic regulator problem and the Goh-Riccati equation, Proceedings of the IEEE Conference on Decision and Control, 1 (1990), 334-339.  doi: 10.1109/CDC.1990.203608.  Google Scholar

[10]

G. A. Bliss, Lectures on the Calculus of Variations, University of Chicago Press, Chicago, Illinois, 1946.  Google Scholar

[11]

F. BonnansJ. Laurent-VarinP. Martinon and E. Trélat, Numerical study of optimal trajectories with singular arcs for an Ariane 5 launcher, J. Guidance Control Dynam., 32 (2009), 51-55.   Google Scholar

[12]

J. F. Bonnans, Optimisation Continue, Dunod, 2006. Google Scholar

[13]

H. J. BortolossiM. V. Pereira and C. Tomei, Optimal hydrothermal scheduling with variable production coefficient, Math. Methods Oper. Res., 55 (2002), 11-36.  doi: 10.1007/s001860200174.  Google Scholar

[14]

H. Brézis, Analyse Fonctionnelle, Masson, Paris, 1983.  Google Scholar

[15]

A. E. Bryson, Jr. and Y. C. Ho, Applied Optimal Control, Hemisphere Publishing Corp. Washington, D. C., 1975. Optimization, estimation, and control, Revised printing.  Google Scholar

[16]

D. I. ChoP. L. Abad and M. Parlar, Optimal production and maintenance decisions when a system experience age-dependent deterioration, Optimal Control Appl. Methods, 14 (1993), 153-167.  doi: 10.1002/oca.4660140302.  Google Scholar

[17]

A. V. Dmitruk, Quadratic conditions for a weak minimum fo control problems, Soviet Math. Doklady, 18 (1977).   Google Scholar

[18]

A. V. Dmitruk, Jacobi-type conditions for the problem of Bolza with inequalities, Math. Notes, 35 (1984), 427-435.   Google Scholar

[19]

A. V. Dmitruk, Quadratic order conditions for a Pontryagin minimum in an optimal control problem linear in the control, Math. USSR Izvestiya, 28 (1987), 275-303.   Google Scholar

[20]

A. V. Dmitruk, Jacobi type conditions for singular extremals, Control & Cybernetics, 37 (2008), 285-306.   Google Scholar

[21]

A. V. Dmitruk, Quadratic order optimality conditions for extremals completely singular in part of controls, in Operations Research Proceedings, Selected Papers of the Annual International Conference of the German Operations Research Society, (2011), 341–346. doi: 10.1007/978-3-642-20009-0_54.  Google Scholar

[22]

A. V. Dmitruk and K. K. Shishov, Analysis of a quadratic functional with a partly singular Legendre condition, Moscow University Comput. Math. and Cybernetics, 34 (2010), 56-65.  doi: 10.3103/S0278641910020020.  Google Scholar

[23]

H. Frankowska and D. Tonon, Pointwise second-order necessary optimality conditions for the Mayer problem with control constraints, SIAM J. Control Optim., 51 (2013), 3814-3843.  doi: 10.1137/130906799.  Google Scholar

[24]

R. H. Goddard, A Method of Reaching Extreme Altitudes, Smithsonian Miscellaneous Collections, 71(2), Smithsonian Institution, City of Washington, 1919. Google Scholar

[25]

B. S. Goh, Necessary conditions for singular extremals involving multiple control variables, J. SIAM Control, 4 (1966), 716-731.  doi: 10.1137/0304052.  Google Scholar

[26]

B. S. Goh, Necessary Conditions for the Singular Extremals in the Calculus of Variations, PhD thesis, University of Canterbury, 1966. Google Scholar

[27]

B. S. Goh, The second variation for the singular Bolza problem, J. SIAM Control, 4 (1966), 309-325.  doi: 10.1137/0304026.  Google Scholar

[28]

B. S. Goh, Optimal singular control for multi-input linear systems, J. Math. Anal. Appl., 20 (1967), 534-539.  doi: 10.1016/0022-247X(67)90079-0.  Google Scholar

[29]

B. S. Goh, Optimal singular rocket and aircraft trajectories, in Control and Decision Conference, CCDC 2008, (2008), 1531–1536. doi: 10.1109/CCDC.2008.4597574.  Google Scholar

[30]

M. R. Hestenes, Applications of the theory of quadratic forms in Hilbert space to the calculus of variations, Pacific J. Math., 1 (1951), 525-581.  doi: 10.2140/pjm.1951.1.525.  Google Scholar

[31]

D. G. Hull, Optimal guidance for quasi-planar lunar ascent, J. Optim. Theory Appl., 151 (2011), 353-372.  doi: 10.1007/s10957-011-9884-5.  Google Scholar

[32]

S. Kurcyusz and J. Zowe, Regularity and stability for the mathematical programming problem in Banach spaces, Applied Mathematics and Optimization, 5 (1979), 49-62.  doi: 10.1007/BF01442543.  Google Scholar

[33]

D. F. Lawden, Optimal Trajectories for Space Navigation, Butterworths, London, 1963.  Google Scholar

[34]

E. S. LevitinA. A. Milyutin and N. P. Osmolovskii, Theory of higher-order conditions in smooth constrained extremal problems, Theoretical and Applied Optimal Control Problems, (1985), 4-40.   Google Scholar

[35]

O. Mangasarian and S. Fromovitz, The Fritz-John necessary optimality conditions in the presence of equality and inequality constraints, J. Math. Anal. Appl., 17 (1967), 37-47.  doi: 10.1016/0022-247X(67)90163-1.  Google Scholar

[36]

H. Maurer, J.-H. Kim and G. Vossen, On a state-constrained control problem in optimal production and maintenance, in Optimal Control and Dynamic Games (eds. C. Deissenberg, R. Hartl, H. M. Amman and B. Rustem), Advances in Computational Management Science, 7, Springer, 2005,289–308. doi: 10.1007/0-387-25805-1_17.  Google Scholar

[37]

H. Maurer and N. P. Osmolovskii, Second order sufficient optimality conditions for a control problem with continuous and bang-bang control components: Riccati approach, in System Modeling and Optimization, IFIP Adv. Inf. Commun. Technol., 312, Springer, Berlin, 2009,411–429. doi: 10.1007/978-3-642-04802-9_24.  Google Scholar

[38]

A. A. Milyutin, On quadratic conditions for an extremum in smooth problems with a finite-dimensional range, Methods of the Theory of Extremal Problems in Economics, (1981), 138-177.   Google Scholar

[39]

A. A. Milyutin and N. P. Osmolovskii, Calculus of Variations and Optimal Control, American Mathematical Society, 1998.  Google Scholar

[40]

H. J. Oberle, On the numerical computation of minimum-fuel, Earth-Mars transfer, J. Optim. Theory Appl., 22 (1977), 447-453.  doi: 10.1007/BF00932866.  Google Scholar

[41]

H. J. Oberle, Numerical computation of singular control functions in trajectory optimization problems, J. Guidance Control Dynam., 13 (1990), 153-159.  doi: 10.2514/3.20529.  Google Scholar

[42]

R. E. O'Malley Jr., Partially Singular Control Problems as Singular Singular-Perturbation Problems, Technical Report, Arizona Univ. Tucson, Department of Mathematics, 1977. Google Scholar

[43]

L. Poggiolini and G. Stefani, Minimum time optimality of a partially singular arc: Second order conditions, in Lagrangian and Hamiltonian Methods for Nonlinear Control 2006, Lecture Notes in Control and Inform. Sci., 366, Springer, Berlin, 2007,281–291. doi: 10.1007/978-3-540-73890-9_22.  Google Scholar

[44]

D. J. W. Ruxton and D. J. Bell, Junction times in singular optimal control, Applied Mathematics and Computation, 70 (1995), 143-154.  doi: 10.1016/0096-3003(94)00115-K.  Google Scholar

[45]

A. Shapiro. On duality theory of conic linear problems, in Semi-Infinite Programming (Alicante, 1999), Nonconvex Optim. Appl., 57, Kluwer Acad. Publ., Dordrecht, 2001,135–165. doi: 10.1007/978-1-4757-3403-4_7.  Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.  Google Scholar

[2]

A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-06404-7.  Google Scholar

[3]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, Optimal Control, Nauka, Moscow, 1979. [in Russian].  Google Scholar

[4]

M. S. Aronna, Convergence of the shooting algorithm for singular optimal control problems, in Proceedings of the IEEE European Control Conference (ECC), July 2013, 215–220. Google Scholar

[5]

M. S. Aronna, Singular Solutions in Optimal Control: Second Order Conditions and a Shooting Algorithm, Technical Report, Inria RR-7764, 2013. arXiv: 1210.7425, Inria RR-7764. Google Scholar

[6]

M. S. AronnaJ. F. BonnansA. V. Dmitruk and P. A. Lotito, Quadratic order conditions for bang-singular extremals, Numer. Algebra Control Optim., 2 (2012), 511-546.  doi: 10.3934/naco.2012.2.511.  Google Scholar

[7]

D. M. Azimov, Active sections of rocket trajectories. A survey of research, Avtomat. i Telemekh., 11 (2005), 14-34.  doi: 10.1007/s10513-005-0207-x.  Google Scholar

[8]

D. J. Bell and D. H. Jacobson, Singular Optimal Control Problems, Academic Press, 1975.  Google Scholar

[9]

D. S. Bernstein and V. Zeidan, The singular linear-quadratic regulator problem and the Goh-Riccati equation, Proceedings of the IEEE Conference on Decision and Control, 1 (1990), 334-339.  doi: 10.1109/CDC.1990.203608.  Google Scholar

[10]

G. A. Bliss, Lectures on the Calculus of Variations, University of Chicago Press, Chicago, Illinois, 1946.  Google Scholar

[11]

F. BonnansJ. Laurent-VarinP. Martinon and E. Trélat, Numerical study of optimal trajectories with singular arcs for an Ariane 5 launcher, J. Guidance Control Dynam., 32 (2009), 51-55.   Google Scholar

[12]

J. F. Bonnans, Optimisation Continue, Dunod, 2006. Google Scholar

[13]

H. J. BortolossiM. V. Pereira and C. Tomei, Optimal hydrothermal scheduling with variable production coefficient, Math. Methods Oper. Res., 55 (2002), 11-36.  doi: 10.1007/s001860200174.  Google Scholar

[14]

H. Brézis, Analyse Fonctionnelle, Masson, Paris, 1983.  Google Scholar

[15]

A. E. Bryson, Jr. and Y. C. Ho, Applied Optimal Control, Hemisphere Publishing Corp. Washington, D. C., 1975. Optimization, estimation, and control, Revised printing.  Google Scholar

[16]

D. I. ChoP. L. Abad and M. Parlar, Optimal production and maintenance decisions when a system experience age-dependent deterioration, Optimal Control Appl. Methods, 14 (1993), 153-167.  doi: 10.1002/oca.4660140302.  Google Scholar

[17]

A. V. Dmitruk, Quadratic conditions for a weak minimum fo control problems, Soviet Math. Doklady, 18 (1977).   Google Scholar

[18]

A. V. Dmitruk, Jacobi-type conditions for the problem of Bolza with inequalities, Math. Notes, 35 (1984), 427-435.   Google Scholar

[19]

A. V. Dmitruk, Quadratic order conditions for a Pontryagin minimum in an optimal control problem linear in the control, Math. USSR Izvestiya, 28 (1987), 275-303.   Google Scholar

[20]

A. V. Dmitruk, Jacobi type conditions for singular extremals, Control & Cybernetics, 37 (2008), 285-306.   Google Scholar

[21]

A. V. Dmitruk, Quadratic order optimality conditions for extremals completely singular in part of controls, in Operations Research Proceedings, Selected Papers of the Annual International Conference of the German Operations Research Society, (2011), 341–346. doi: 10.1007/978-3-642-20009-0_54.  Google Scholar

[22]

A. V. Dmitruk and K. K. Shishov, Analysis of a quadratic functional with a partly singular Legendre condition, Moscow University Comput. Math. and Cybernetics, 34 (2010), 56-65.  doi: 10.3103/S0278641910020020.  Google Scholar

[23]

H. Frankowska and D. Tonon, Pointwise second-order necessary optimality conditions for the Mayer problem with control constraints, SIAM J. Control Optim., 51 (2013), 3814-3843.  doi: 10.1137/130906799.  Google Scholar

[24]

R. H. Goddard, A Method of Reaching Extreme Altitudes, Smithsonian Miscellaneous Collections, 71(2), Smithsonian Institution, City of Washington, 1919. Google Scholar

[25]

B. S. Goh, Necessary conditions for singular extremals involving multiple control variables, J. SIAM Control, 4 (1966), 716-731.  doi: 10.1137/0304052.  Google Scholar

[26]

B. S. Goh, Necessary Conditions for the Singular Extremals in the Calculus of Variations, PhD thesis, University of Canterbury, 1966. Google Scholar

[27]

B. S. Goh, The second variation for the singular Bolza problem, J. SIAM Control, 4 (1966), 309-325.  doi: 10.1137/0304026.  Google Scholar

[28]

B. S. Goh, Optimal singular control for multi-input linear systems, J. Math. Anal. Appl., 20 (1967), 534-539.  doi: 10.1016/0022-247X(67)90079-0.  Google Scholar

[29]

B. S. Goh, Optimal singular rocket and aircraft trajectories, in Control and Decision Conference, CCDC 2008, (2008), 1531–1536. doi: 10.1109/CCDC.2008.4597574.  Google Scholar

[30]

M. R. Hestenes, Applications of the theory of quadratic forms in Hilbert space to the calculus of variations, Pacific J. Math., 1 (1951), 525-581.  doi: 10.2140/pjm.1951.1.525.  Google Scholar

[31]

D. G. Hull, Optimal guidance for quasi-planar lunar ascent, J. Optim. Theory Appl., 151 (2011), 353-372.  doi: 10.1007/s10957-011-9884-5.  Google Scholar

[32]

S. Kurcyusz and J. Zowe, Regularity and stability for the mathematical programming problem in Banach spaces, Applied Mathematics and Optimization, 5 (1979), 49-62.  doi: 10.1007/BF01442543.  Google Scholar

[33]

D. F. Lawden, Optimal Trajectories for Space Navigation, Butterworths, London, 1963.  Google Scholar

[34]

E. S. LevitinA. A. Milyutin and N. P. Osmolovskii, Theory of higher-order conditions in smooth constrained extremal problems, Theoretical and Applied Optimal Control Problems, (1985), 4-40.   Google Scholar

[35]

O. Mangasarian and S. Fromovitz, The Fritz-John necessary optimality conditions in the presence of equality and inequality constraints, J. Math. Anal. Appl., 17 (1967), 37-47.  doi: 10.1016/0022-247X(67)90163-1.  Google Scholar

[36]

H. Maurer, J.-H. Kim and G. Vossen, On a state-constrained control problem in optimal production and maintenance, in Optimal Control and Dynamic Games (eds. C. Deissenberg, R. Hartl, H. M. Amman and B. Rustem), Advances in Computational Management Science, 7, Springer, 2005,289–308. doi: 10.1007/0-387-25805-1_17.  Google Scholar

[37]

H. Maurer and N. P. Osmolovskii, Second order sufficient optimality conditions for a control problem with continuous and bang-bang control components: Riccati approach, in System Modeling and Optimization, IFIP Adv. Inf. Commun. Technol., 312, Springer, Berlin, 2009,411–429. doi: 10.1007/978-3-642-04802-9_24.  Google Scholar

[38]

A. A. Milyutin, On quadratic conditions for an extremum in smooth problems with a finite-dimensional range, Methods of the Theory of Extremal Problems in Economics, (1981), 138-177.   Google Scholar

[39]

A. A. Milyutin and N. P. Osmolovskii, Calculus of Variations and Optimal Control, American Mathematical Society, 1998.  Google Scholar

[40]

H. J. Oberle, On the numerical computation of minimum-fuel, Earth-Mars transfer, J. Optim. Theory Appl., 22 (1977), 447-453.  doi: 10.1007/BF00932866.  Google Scholar

[41]

H. J. Oberle, Numerical computation of singular control functions in trajectory optimization problems, J. Guidance Control Dynam., 13 (1990), 153-159.  doi: 10.2514/3.20529.  Google Scholar

[42]

R. E. O'Malley Jr., Partially Singular Control Problems as Singular Singular-Perturbation Problems, Technical Report, Arizona Univ. Tucson, Department of Mathematics, 1977. Google Scholar

[43]

L. Poggiolini and G. Stefani, Minimum time optimality of a partially singular arc: Second order conditions, in Lagrangian and Hamiltonian Methods for Nonlinear Control 2006, Lecture Notes in Control and Inform. Sci., 366, Springer, Berlin, 2007,281–291. doi: 10.1007/978-3-540-73890-9_22.  Google Scholar

[44]

D. J. W. Ruxton and D. J. Bell, Junction times in singular optimal control, Applied Mathematics and Computation, 70 (1995), 143-154.  doi: 10.1016/0096-3003(94)00115-K.  Google Scholar

[45]

A. Shapiro. On duality theory of conic linear problems, in Semi-Infinite Programming (Alicante, 1999), Nonconvex Optim. Appl., 57, Kluwer Acad. Publ., Dordrecht, 2001,135–165. doi: 10.1007/978-1-4757-3403-4_7.  Google Scholar

[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[3]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[4]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[5]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[6]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[7]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[8]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[9]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[10]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[11]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[14]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[15]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[16]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[17]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[18]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[19]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[20]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (111)
  • HTML views (159)
  • Cited by (0)

Other articles
by authors

[Back to Top]