December  2018, 11(6): 1283-1316. doi: 10.3934/dcdss.2018072

Structure of approximate solutions of Bolza variational problems on large intervals

Department of Mathematics, The Technion – Israel Institute of Technology, Technion City, Haifa 32000, Israel

Received  March 2017 Revised  July 2017 Published  June 2018

In this paper we study the structure of approximate solutions of autonomous Bolza variational problems on large finite intervals. We show that approximate solutions are determined mainly by the integrand, and are essentially independent of the choice of time interval and data.

Citation: Alexander J. Zaslavski. Structure of approximate solutions of Bolza variational problems on large intervals. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1283-1316. doi: 10.3934/dcdss.2018072
References:
[1]

S. M. Aseev and V. M. Veliov, Maximum principle for infinite-horizon optimal control problems with dominating discount, Dynamics of Continuous, Discrete and Impulsive Systems, SERIES B, 19 (2012), 43-63. Google Scholar

[2]

J. P. Aubin and I. Ekeland I, Applied Nonlinear Analysis, Wiley Interscience, New York, 1984. Google Scholar

[3]

S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions I, Physica D, 8 (1983), 381-422. doi: 10.1016/0167-2789(83)90233-6. Google Scholar

[4]

M. Bashir and J. Blot, Infinite dimensional infinite-horizon Pontryagin principles for discrete-time problems, Set-Valued and Variational Analysis, 23 (2015), 43-54. doi: 10.1007/s11228-014-0302-7. Google Scholar

[5]

J. Blot and P. Cartigny, Optimality in infinite-horizon variational problems under sign conditions, J. Optim. Theory Appl., 106 (2000), 411-419. doi: 10.1023/A:1004611816252. Google Scholar

[6]

J. Blot and N. Hayek, Infinite-Horizon Optimal Control in the Discrete-Time Framework, SpringerBriefs in Optimization, New York. 2014. doi: 10.1007/978-1-4614-9038-8. Google Scholar

[7]

I. Bright, A reduction of topological infinite-horizon optimization to periodic optimization in a class of compact 2-manifolds, Journal of Mathematical Analysis and Applications, 394 (2012), 84-101. doi: 10.1016/j.jmaa.2012.03.042. Google Scholar

[8]

D. A. Carlson, A. Haurie and A. Leizarowitz, Infinite Horizon Optimal Control, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-3-642-76755-5. Google Scholar

[9]

P. Cartigny and P. Michel, On a sufficient transversality condition for infinite horizon optimal control problems, Automatica J. IFAC, 39 (2003), 1007-1010. doi: 10.1016/S0005-1098(03)00060-8. Google Scholar

[10]

T. DammL. GruneM. Stieler and K. Worthmann, An exponential turnpike theorem for dissipative discrete time optimal control problems, SIAM Journal on Control and Optimization, 52 (2014), 1935-1957. doi: 10.1137/120888934. Google Scholar

[11]

V. A. De Oliveira and G. N. Silva, Optimality conditions for infinite horizon control problems with state constraints, Nonlinear Analysis, 71 (2009), 1788-1795. doi: 10.1016/j.na.2009.02.052. Google Scholar

[12]

V. GaitsgoryL. Grune and N. Thatcher, Stabilization with discounted optimal control, Systems and Control Letters, 82 (2015), 91-98. doi: 10.1016/j.sysconle.2015.05.010. Google Scholar

[13]

N. Hayek, Infinite horizon multiobjective optimal control problems in the discrete time case, Optimization, 60 (2011), 509-529. doi: 10.1080/02331930903480352. Google Scholar

[14]

D. V. Khlopin, Necessary conditions of overtaking equilibrium for infinite horizon differential games, Mat.Teor. Igr Pril., 5 (2013), 105-136. Google Scholar

[15]

A. Leizarowitz and V. J. Mizel, One dimensional infinite horizon variational problems arising in continuum mechanics, Arch. Rational Mech. Anal., 106 (1989), 161-194. doi: 10.1007/BF00251430. Google Scholar

[16]

V. LykinaS. Pickenhain and M. Wagner, Different interpretations of the improper integral objective in an infinite horizon control problem, J. Math. Anal. Appl., 340 (2008), 498-510. doi: 10.1016/j.jmaa.2007.08.008. Google Scholar

[17]

M. Mammadov, Turnpike theorem for an infinite horizon optimal control problem with time delay, SIAM Journal on Control and Optimization, 52 (2014), 420-438. doi: 10.1137/130926808. Google Scholar

[18]

M. Marcus and A. J. Zaslavski, The structure of extremals of a class of second order variational problems, Ann. Inst. H. Poincaré, Anal. non linéaire, 16 (1999), 593-629. doi: 10.1016/S0294-1449(99)80029-8. Google Scholar

[19]

L. W. McKenzie, Turnpike theory, Econometrica, 44 (1976), 841-866. doi: 10.2307/1911532. Google Scholar

[20]

B. S. Mordukhovich, Optimal control and feedback design of state-constrained parabolic systems in uncertainly conditions, Appl. Analysis, 90 (2011), 1075-1109. doi: 10.1080/00036811003735840. Google Scholar

[21]

P. A. Samuelson, A catenary turnpike theorem involving consumption and the golden rule, Amer. Econom. Rev., 55 (1965), 486-496. Google Scholar

[22]

E. Trelat and E. Zuazua, E The turnpike property in finite-dimensional nonlinear optimal control, Journal of Differential Equations, 218 (2015), 81-114. doi: 10.1016/j.jde.2014.09.005. Google Scholar

[23]

A. J. Zaslavski, Ground states in Frenkel-Kontorova model, Math. USSR Izvestiya, 29 (1987), 323-354. doi: 10.1070/IM1987v029n02ABEH000972. Google Scholar

[24]

A. J. Zaslavski, Dynamic properties of optimal solutions of variational problems, Nonlinear Analysis, Theory, Methods and Applications, 27 (1996), 895-931. doi: 10.1016/0362-546X(95)00029-U. Google Scholar

[25]

A. J. Zaslavski, Existence and uniform boundedness of optimal solutions of variational problems, Abstract and Applied Analysis, 3 (1998), 265-292. doi: 10.1155/S1085337598000566. Google Scholar

[26]

A. J. Zaslavski, Turnpike property for extremals of variational problems with vector-valued functions, Transactions of the AMS, 351 (1999), 211-231. doi: 10.1090/S0002-9947-99-02132-7. Google Scholar

[27]

A. J. Zaslavski, Turnpike Properties in the Calculus of Variations and Optimal Control, Springer, New York. 2006. Google Scholar

[28]

A. J. Zaslavski, A nonintersection property for extremals of variational problems with vector-valued functions, Ann. Inst. H. Poincare, Anal.non lineare, 23 (2006), 929-948. doi: 10.1016/j.anihpc.2006.01.002. Google Scholar

[29]

A. J. Zaslavski, Turnpike properties of approximate solutions of autonomous variational problems, Control and Cybernetics, 37 (2008), 491-512. Google Scholar

[30]

A. J. Zaslavski, Convergence of approximate solutions of variational problems, Control and Cybernetics, 38 (2009), 1607-1629. Google Scholar

[31]

A. J. Zaslavski, Turnpike Phenomenon and Infinite Horizon Optimal Control, Springer Optimization and Its Applications, New York, 2014. doi: 10.1007/978-3-319-08828-0. Google Scholar

[32]

A. J. Zaslavski, Turnpike Theory of Continuous-Time Linear Optimal Control Problems, Springer Optimization and Its Applications, Springer, Cham-Heidelberg-New York-Dordrecht-London, 2015. doi: 10.1007/978-3-319-19141-6. Google Scholar

[33]

A. J. Zaslavski, Structure of extremals of variational problems in the regions close to the endpoints, Calculus of Variations and PDE's, 53 (2015), 847-878. doi: 10.1007/s00526-014-0769-y. Google Scholar

[34]

A. J. Zaslavski, Structure of solutions of optimal control problems on large intervals: A survey of recent results, Pure and Applied Functional Analysis, 1 (2016), 123-158. Google Scholar

[35]

A. J. Zaslavski, Linear control systems with nonconvex integrands on large intervals, Pure and Applied Functional Analysis, 1 (2016), 441-474. Google Scholar

[36]

A. J. Zaslavski, Structure of approximate solutions of autonomous variational problems, Applied Analysis and Optimization, 1 (2017), 113-151. Google Scholar

show all references

References:
[1]

S. M. Aseev and V. M. Veliov, Maximum principle for infinite-horizon optimal control problems with dominating discount, Dynamics of Continuous, Discrete and Impulsive Systems, SERIES B, 19 (2012), 43-63. Google Scholar

[2]

J. P. Aubin and I. Ekeland I, Applied Nonlinear Analysis, Wiley Interscience, New York, 1984. Google Scholar

[3]

S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions I, Physica D, 8 (1983), 381-422. doi: 10.1016/0167-2789(83)90233-6. Google Scholar

[4]

M. Bashir and J. Blot, Infinite dimensional infinite-horizon Pontryagin principles for discrete-time problems, Set-Valued and Variational Analysis, 23 (2015), 43-54. doi: 10.1007/s11228-014-0302-7. Google Scholar

[5]

J. Blot and P. Cartigny, Optimality in infinite-horizon variational problems under sign conditions, J. Optim. Theory Appl., 106 (2000), 411-419. doi: 10.1023/A:1004611816252. Google Scholar

[6]

J. Blot and N. Hayek, Infinite-Horizon Optimal Control in the Discrete-Time Framework, SpringerBriefs in Optimization, New York. 2014. doi: 10.1007/978-1-4614-9038-8. Google Scholar

[7]

I. Bright, A reduction of topological infinite-horizon optimization to periodic optimization in a class of compact 2-manifolds, Journal of Mathematical Analysis and Applications, 394 (2012), 84-101. doi: 10.1016/j.jmaa.2012.03.042. Google Scholar

[8]

D. A. Carlson, A. Haurie and A. Leizarowitz, Infinite Horizon Optimal Control, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-3-642-76755-5. Google Scholar

[9]

P. Cartigny and P. Michel, On a sufficient transversality condition for infinite horizon optimal control problems, Automatica J. IFAC, 39 (2003), 1007-1010. doi: 10.1016/S0005-1098(03)00060-8. Google Scholar

[10]

T. DammL. GruneM. Stieler and K. Worthmann, An exponential turnpike theorem for dissipative discrete time optimal control problems, SIAM Journal on Control and Optimization, 52 (2014), 1935-1957. doi: 10.1137/120888934. Google Scholar

[11]

V. A. De Oliveira and G. N. Silva, Optimality conditions for infinite horizon control problems with state constraints, Nonlinear Analysis, 71 (2009), 1788-1795. doi: 10.1016/j.na.2009.02.052. Google Scholar

[12]

V. GaitsgoryL. Grune and N. Thatcher, Stabilization with discounted optimal control, Systems and Control Letters, 82 (2015), 91-98. doi: 10.1016/j.sysconle.2015.05.010. Google Scholar

[13]

N. Hayek, Infinite horizon multiobjective optimal control problems in the discrete time case, Optimization, 60 (2011), 509-529. doi: 10.1080/02331930903480352. Google Scholar

[14]

D. V. Khlopin, Necessary conditions of overtaking equilibrium for infinite horizon differential games, Mat.Teor. Igr Pril., 5 (2013), 105-136. Google Scholar

[15]

A. Leizarowitz and V. J. Mizel, One dimensional infinite horizon variational problems arising in continuum mechanics, Arch. Rational Mech. Anal., 106 (1989), 161-194. doi: 10.1007/BF00251430. Google Scholar

[16]

V. LykinaS. Pickenhain and M. Wagner, Different interpretations of the improper integral objective in an infinite horizon control problem, J. Math. Anal. Appl., 340 (2008), 498-510. doi: 10.1016/j.jmaa.2007.08.008. Google Scholar

[17]

M. Mammadov, Turnpike theorem for an infinite horizon optimal control problem with time delay, SIAM Journal on Control and Optimization, 52 (2014), 420-438. doi: 10.1137/130926808. Google Scholar

[18]

M. Marcus and A. J. Zaslavski, The structure of extremals of a class of second order variational problems, Ann. Inst. H. Poincaré, Anal. non linéaire, 16 (1999), 593-629. doi: 10.1016/S0294-1449(99)80029-8. Google Scholar

[19]

L. W. McKenzie, Turnpike theory, Econometrica, 44 (1976), 841-866. doi: 10.2307/1911532. Google Scholar

[20]

B. S. Mordukhovich, Optimal control and feedback design of state-constrained parabolic systems in uncertainly conditions, Appl. Analysis, 90 (2011), 1075-1109. doi: 10.1080/00036811003735840. Google Scholar

[21]

P. A. Samuelson, A catenary turnpike theorem involving consumption and the golden rule, Amer. Econom. Rev., 55 (1965), 486-496. Google Scholar

[22]

E. Trelat and E. Zuazua, E The turnpike property in finite-dimensional nonlinear optimal control, Journal of Differential Equations, 218 (2015), 81-114. doi: 10.1016/j.jde.2014.09.005. Google Scholar

[23]

A. J. Zaslavski, Ground states in Frenkel-Kontorova model, Math. USSR Izvestiya, 29 (1987), 323-354. doi: 10.1070/IM1987v029n02ABEH000972. Google Scholar

[24]

A. J. Zaslavski, Dynamic properties of optimal solutions of variational problems, Nonlinear Analysis, Theory, Methods and Applications, 27 (1996), 895-931. doi: 10.1016/0362-546X(95)00029-U. Google Scholar

[25]

A. J. Zaslavski, Existence and uniform boundedness of optimal solutions of variational problems, Abstract and Applied Analysis, 3 (1998), 265-292. doi: 10.1155/S1085337598000566. Google Scholar

[26]

A. J. Zaslavski, Turnpike property for extremals of variational problems with vector-valued functions, Transactions of the AMS, 351 (1999), 211-231. doi: 10.1090/S0002-9947-99-02132-7. Google Scholar

[27]

A. J. Zaslavski, Turnpike Properties in the Calculus of Variations and Optimal Control, Springer, New York. 2006. Google Scholar

[28]

A. J. Zaslavski, A nonintersection property for extremals of variational problems with vector-valued functions, Ann. Inst. H. Poincare, Anal.non lineare, 23 (2006), 929-948. doi: 10.1016/j.anihpc.2006.01.002. Google Scholar

[29]

A. J. Zaslavski, Turnpike properties of approximate solutions of autonomous variational problems, Control and Cybernetics, 37 (2008), 491-512. Google Scholar

[30]

A. J. Zaslavski, Convergence of approximate solutions of variational problems, Control and Cybernetics, 38 (2009), 1607-1629. Google Scholar

[31]

A. J. Zaslavski, Turnpike Phenomenon and Infinite Horizon Optimal Control, Springer Optimization and Its Applications, New York, 2014. doi: 10.1007/978-3-319-08828-0. Google Scholar

[32]

A. J. Zaslavski, Turnpike Theory of Continuous-Time Linear Optimal Control Problems, Springer Optimization and Its Applications, Springer, Cham-Heidelberg-New York-Dordrecht-London, 2015. doi: 10.1007/978-3-319-19141-6. Google Scholar

[33]

A. J. Zaslavski, Structure of extremals of variational problems in the regions close to the endpoints, Calculus of Variations and PDE's, 53 (2015), 847-878. doi: 10.1007/s00526-014-0769-y. Google Scholar

[34]

A. J. Zaslavski, Structure of solutions of optimal control problems on large intervals: A survey of recent results, Pure and Applied Functional Analysis, 1 (2016), 123-158. Google Scholar

[35]

A. J. Zaslavski, Linear control systems with nonconvex integrands on large intervals, Pure and Applied Functional Analysis, 1 (2016), 441-474. Google Scholar

[36]

A. J. Zaslavski, Structure of approximate solutions of autonomous variational problems, Applied Analysis and Optimization, 1 (2017), 113-151. Google Scholar

[1]

Yves Edel, Alexander Pott. A new almost perfect nonlinear function which is not quadratic. Advances in Mathematics of Communications, 2009, 3 (1) : 59-81. doi: 10.3934/amc.2009.3.59

[2]

Alexander J. Zaslavski. Good programs in the RSS model without concavity of a utility function. Journal of Industrial & Management Optimization, 2006, 2 (4) : 399-423. doi: 10.3934/jimo.2006.2.399

[3]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems & Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[4]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[5]

Liuyang Yuan, Zhongping Wan, Jingjing Zhang, Bin Sun. A filled function method for solving nonlinear complementarity problem. Journal of Industrial & Management Optimization, 2009, 5 (4) : 911-928. doi: 10.3934/jimo.2009.5.911

[6]

Alexander J. Zaslavski. The turnpike property of discrete-time control problems arising in economic dynamics. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 861-880. doi: 10.3934/dcdsb.2005.5.861

[7]

Nguyen Huy Chieu, Jen-Chih Yao. Subgradients of the optimal value function in a parametric discrete optimal control problem. Journal of Industrial & Management Optimization, 2010, 6 (2) : 401-410. doi: 10.3934/jimo.2010.6.401

[8]

Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977

[9]

Na Zhao, Zheng-Hai Huang. A nonmonotone smoothing Newton algorithm for solving box constrained variational inequalities with a $P_0$ function. Journal of Industrial & Management Optimization, 2011, 7 (2) : 467-482. doi: 10.3934/jimo.2011.7.467

[10]

Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939

[11]

Yang Yang, Xiaohu Tang, Guang Gong. New almost perfect, odd perfect, and perfect sequences from difference balanced functions with d-form property. Advances in Mathematics of Communications, 2017, 11 (1) : 67-76. doi: 10.3934/amc.2017002

[12]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[13]

Hassan Emamirad, Philippe Rogeon. Semiclassical limit of Husimi function. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 669-676. doi: 10.3934/dcdss.2013.6.669

[14]

Ken Ono. Parity of the partition function. Electronic Research Announcements, 1995, 1: 35-42.

[15]

Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2741-2750. doi: 10.3934/dcds.2014.34.2741

[16]

Kaizhi Wang, Yong Li. Existence and monotonicity property of minimizers of a nonconvex variational problem with a second-order Lagrangian. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 687-699. doi: 10.3934/dcds.2009.25.687

[17]

Samuel T. Blake, Thomas E. Hall, Andrew Z. Tirkel. Arrays over roots of unity with perfect autocorrelation and good ZCZ cross-correlation. Advances in Mathematics of Communications, 2013, 7 (3) : 231-242. doi: 10.3934/amc.2013.7.231

[18]

M. L. Miotto. Multiple solutions for elliptic problem in $\mathbb{R}^N$ with critical Sobolev exponent and weight function. Communications on Pure & Applied Analysis, 2010, 9 (1) : 233-248. doi: 10.3934/cpaa.2010.9.233

[19]

Yu-Lin Chang, Jein-Shan Chen, Jia Wu. Proximal point algorithm for nonlinear complementarity problem based on the generalized Fischer-Burmeister merit function. Journal of Industrial & Management Optimization, 2013, 9 (1) : 153-169. doi: 10.3934/jimo.2013.9.153

[20]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (31)
  • HTML views (109)
  • Cited by (0)

Other articles
by authors

[Back to Top]