February  2019, 12(1): 43-56. doi: 10.3934/dcdss.2019003

Asymptotics for quasilinear obstacle problems in bad domains

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, "Sapienza" Università di Roma, Via A. Scarpa 16, 00161 Roma, Italy

* Corresponding author

Received  March 2017 Revised  October 2017 Published  July 2018

Fund Project: The first author is supported by INdAM GNAMPA Project 2016 and Grant Ateneo "Sapienza" 2015.

We study two obstacle problems involving the p-Laplace operator in domains with n-th pre-fractal and fractal boundary. We perform asymptotic analysis for $p \to \infty $ and $n \to \infty $.

Citation: Raffaela Capitanelli, Salvatore Fragapane. Asymptotics for quasilinear obstacle problems in bad domains. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 43-56. doi: 10.3934/dcdss.2019003
References:
[1]

G. AronssonM. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.), 41 (2004), 439-505.  doi: 10.1090/S0273-0979-04-01035-3.  Google Scholar

[2]

J. W. Barrett and W. B Liu, Finite element approximation of the p-Laplacian, Math. Comp., 61 (1993), 523-537.  doi: 10.2307/2153239.  Google Scholar

[3]

T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as $p \to + \infty $ of ${\Delta _p}{u_p} = f$ and related extremal problems, Some Topics in Nonlinear PDEs (Turin, 1989), Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue, 15-68 (1991).  Google Scholar

[4]

F. CamilliR. Capitanelli and M. A. Vivaldi, Absolutely minimizing Lipschitz extensions and infinity harmonic functions on the Sierpinski gasket, Nonlinear Anal., 163 (2017), 71-85.  doi: 10.1016/j.na.2017.07.005.  Google Scholar

[5]

R. Capitanelli, Asymptotics for mixed Dirichlet-Robin problems in irregular domains, J. Math. Anal. Appl., 362 (2010), 450-459.  doi: 10.1016/j.jmaa.2009.09.042.  Google Scholar

[6]

R. Capitanelli and M. A. Vivaldi, Dynamical Quasi-Filling Fractal Layers, SIAM J. Math. Anal., 48 (2016), 3931-3961.  doi: 10.1137/15M1043893.  Google Scholar

[7]

R. Capitanelli and M. A. Vivaldi, FEM for quasilinear obstacle problems in bad domains, ESAIM Math. Model. Numer. Anal., 51 (2017), 2465-2485.  doi: 10.1051/m2an/2017033.  Google Scholar

[8]

J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries, Vol. Ⅰ. Elliptic equations. Research Notes in Mathematics. 106. Pitman, Boston, MA, 1985.  Google Scholar

[9]

L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137 (1999), ⅷ+66 pp. doi: 10.1090/memo/0653.  Google Scholar

[10]

D. S. Grebenkov, M. Filoche and B. Sapoval, Mathematical basis for a general theory of Laplacian transport towards irregular interfaces, Phys. Rev. E, 73 (2006), 021103, 9pp. doi: 10.1103/PhysRevE.73.021103.  Google Scholar

[11]

J. E. Hutchinson, Fractals and selfsimilarity, Indiana Univ. Math. J, 30 (1981), 713-747.  doi: 10.1512/iumj.1981.30.30055.  Google Scholar

[12]

R. Jensen, Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74.  doi: 10.1007/BF00386368.  Google Scholar

[13]

J. M. MazónJ. D. Rossi and J. Toledo, Mass transport problems for the Euclidean distance obtained as limits of p-Laplacian type problems with obstacles, Journal of Differential Equations, 256 (2014), 3208-3244.  doi: 10.1016/j.jde.2014.01.039.  Google Scholar

[14]

E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc., 40 (1934), 837-842.  doi: 10.1090/S0002-9904-1934-05978-0.  Google Scholar

[15]

U. Mosco, Convergence of convex sets and solutions of variational inequalities, Adv. Math., 3 (1969), 510-585.  doi: 10.1016/0001-8708(69)90009-7.  Google Scholar

[16]

U. Mosco and M. A. Vivaldi, Layered fractal fibers and potentials, J. Math. Pures Appl. (9), 103 (2015), 1198-1227.  doi: 10.1016/j.matpur.2014.10.010.  Google Scholar

[17]

Y. PeresO. SchrammS. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), 167-210.  doi: 10.1090/S0894-0347-08-00606-1.  Google Scholar

[18]

H. L. Royden, Real Analysis, Third edition. Macmillan Publishing Company, New York, 1988.  Google Scholar

[19]

G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Springer, 1987. doi: 10.1007/978-1-4899-3614-1.  Google Scholar

[20]

C. Villani, Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

show all references

References:
[1]

G. AronssonM. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.), 41 (2004), 439-505.  doi: 10.1090/S0273-0979-04-01035-3.  Google Scholar

[2]

J. W. Barrett and W. B Liu, Finite element approximation of the p-Laplacian, Math. Comp., 61 (1993), 523-537.  doi: 10.2307/2153239.  Google Scholar

[3]

T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as $p \to + \infty $ of ${\Delta _p}{u_p} = f$ and related extremal problems, Some Topics in Nonlinear PDEs (Turin, 1989), Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue, 15-68 (1991).  Google Scholar

[4]

F. CamilliR. Capitanelli and M. A. Vivaldi, Absolutely minimizing Lipschitz extensions and infinity harmonic functions on the Sierpinski gasket, Nonlinear Anal., 163 (2017), 71-85.  doi: 10.1016/j.na.2017.07.005.  Google Scholar

[5]

R. Capitanelli, Asymptotics for mixed Dirichlet-Robin problems in irregular domains, J. Math. Anal. Appl., 362 (2010), 450-459.  doi: 10.1016/j.jmaa.2009.09.042.  Google Scholar

[6]

R. Capitanelli and M. A. Vivaldi, Dynamical Quasi-Filling Fractal Layers, SIAM J. Math. Anal., 48 (2016), 3931-3961.  doi: 10.1137/15M1043893.  Google Scholar

[7]

R. Capitanelli and M. A. Vivaldi, FEM for quasilinear obstacle problems in bad domains, ESAIM Math. Model. Numer. Anal., 51 (2017), 2465-2485.  doi: 10.1051/m2an/2017033.  Google Scholar

[8]

J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries, Vol. Ⅰ. Elliptic equations. Research Notes in Mathematics. 106. Pitman, Boston, MA, 1985.  Google Scholar

[9]

L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137 (1999), ⅷ+66 pp. doi: 10.1090/memo/0653.  Google Scholar

[10]

D. S. Grebenkov, M. Filoche and B. Sapoval, Mathematical basis for a general theory of Laplacian transport towards irregular interfaces, Phys. Rev. E, 73 (2006), 021103, 9pp. doi: 10.1103/PhysRevE.73.021103.  Google Scholar

[11]

J. E. Hutchinson, Fractals and selfsimilarity, Indiana Univ. Math. J, 30 (1981), 713-747.  doi: 10.1512/iumj.1981.30.30055.  Google Scholar

[12]

R. Jensen, Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74.  doi: 10.1007/BF00386368.  Google Scholar

[13]

J. M. MazónJ. D. Rossi and J. Toledo, Mass transport problems for the Euclidean distance obtained as limits of p-Laplacian type problems with obstacles, Journal of Differential Equations, 256 (2014), 3208-3244.  doi: 10.1016/j.jde.2014.01.039.  Google Scholar

[14]

E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc., 40 (1934), 837-842.  doi: 10.1090/S0002-9904-1934-05978-0.  Google Scholar

[15]

U. Mosco, Convergence of convex sets and solutions of variational inequalities, Adv. Math., 3 (1969), 510-585.  doi: 10.1016/0001-8708(69)90009-7.  Google Scholar

[16]

U. Mosco and M. A. Vivaldi, Layered fractal fibers and potentials, J. Math. Pures Appl. (9), 103 (2015), 1198-1227.  doi: 10.1016/j.matpur.2014.10.010.  Google Scholar

[17]

Y. PeresO. SchrammS. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), 167-210.  doi: 10.1090/S0894-0347-08-00606-1.  Google Scholar

[18]

H. L. Royden, Real Analysis, Third edition. Macmillan Publishing Company, New York, 1988.  Google Scholar

[19]

G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Springer, 1987. doi: 10.1007/978-1-4899-3614-1.  Google Scholar

[20]

C. Villani, Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

Figure 1.  $\Omega_3^n$
Figure 2.  A bad domain
Figure 3.  Second step
Figure 4.  Third step
Figure 5.  Fourth step
[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[5]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[6]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[7]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[8]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[11]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[14]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[15]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[16]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[17]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[18]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[19]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[20]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (112)
  • HTML views (77)
  • Cited by (0)

Other articles
by authors

[Back to Top]