February  2019, 12(1): 57-64. doi: 10.3934/dcdss.2019004

On two-dimensional nonlocal Venttsel' problems in piecewise smooth domains

1. 

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Università degli studi di Roma Sapienza, Via A. Scarpa 16, 00161 Roma, Italy

2. 

St. Petersburg Department of Steklov Mathematical Institute, and St. Petersburg State University, Fontanka 27, and Universitetskii pr. 28, 191023 St. Petersburg, Russia and 198504 St. Petersburg, Russia

3. 

Dipartimento di Matematica, Università degli Studi di Roma Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy

* Corresponding author: Paola Vernole

Received  February 2017 Revised  August 2017 Published  July 2018

We establish the regularity results for solutions of nonlocal Venttsel' problems in polygonal and piecewise smooth two-dimensional domains.

Citation: Simone Creo, Maria Rosaria Lancia, Alexander Nazarov, Paola Vernole. On two-dimensional nonlocal Venttsel' problems in piecewise smooth domains. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 57-64. doi: 10.3934/dcdss.2019004
References:
[1]

D. E. Apushkinskaya and A. I. Nazarov, A survey of results on nonlinear Venttsel' problems, Application of Mathematics, 45 (2000), 69-80.  doi: 10.1023/A:1022288717033.  Google Scholar

[2]

D. E. Apushkinskaya and A. I. Nazarov, Linear two-phase Venttsel' problems, Ark. Mat., 39 (2001), 201-222.  doi: 10.1007/BF02384554.  Google Scholar

[3]

W. ArendtG. MetafuneD. Pallara and S. Romanelli, The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions, Semigroup Forum, 67 (2003), 247-261.  doi: 10.1007/s00233-002-0010-8.  Google Scholar

[4]

F. Brezzi and G. Gilardi, Fundamentals of P. D. E. for Numerical Analysis, in: Finite Element Handbook (ed.: H. Kardestuncer and D. H. Norrie), McGraw-Hill Book Co., New York, 1987.  Google Scholar

[5]

M. CefaloG. Dell'Acqua and M. R. Lancia, Numerical approximation of transmission problems across Koch-type highly conductive layers, Applied Mathematics and Computation, 218 (2012), 5453-5473.  doi: 10.1016/j.amc.2011.11.033.  Google Scholar

[6]

M. CefaloM. R. Lancia and H. Liang, Heat flow problems across fractal mixtures: Regularity results of the solutions and numerical approximation, Differ. Integral Equ., 26 (2013), 1027-1054.   Google Scholar

[7]

G. Goldstein Ruiz, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480.   Google Scholar

[8]

G. Hardy, J. Littlewood, G. Polya, Inequalities, Cambridge University Press, Cambridge, 1952.  Google Scholar

[9]

V. A. Kondrat'ev,, Boundary-value problems for elliptic equations in domains with conical or angular point, Trans. Moscow Math. Soc., 16 (1967), 209-292.   Google Scholar

[10]

M. R. Lancia, Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1493-1520.  doi: 10.3934/dcdss.2016060.  Google Scholar

[11]

M. R. LanciaA. Vélez-Santiago and P. Vernole, Quasi{linear Venttsel' problems with nonlocal boundary conditions, Nonlinear Anal. Real World Appl., 35 (2017), 265-291.  doi: 10.1016/j.nonrwa.2016.11.002.  Google Scholar

[12]

M. R. Lancia and P. Vernole, Venttsel' problems in fractal domains, J. Evol. Equ., 14 (2014), 681-712.  doi: 10.1007/s00028-014-0233-7.  Google Scholar

[13]

V. G. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer-Verlag, 2011. doi: 10. 1007/978-3-642-15564-2.  Google Scholar

[14]

A. I. Nazarov, On the nonstationary two-phase Venttsel problem in the transversal case, Problems in Mathematical Analysis, J. Math. Sci. (N. Y.), 122 (2004), 3251-3264.  doi: 10.1023/B:JOTH.0000031019.56619.4d.  Google Scholar

[15]

S. A. Nazarov, B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, de Gruyter, Berlin-New York, 1994. doi: 10. 1515/9783110848915. 525.  Google Scholar

[16]

J. Necas, Les Mèthodes Directes en Thèorie des Èquationes Elliptiques, Masson, Paris, 1967.  Google Scholar

[17]

A. Vélez-Santiago, Quasi-linear variable exponent boundary value problems with Wentzell-Robin and Wentzell boundary conditions, J. Functional Analysis, 266 (2014), 560-615.  doi: 10.1016/j.jfa.2013.10.017.  Google Scholar

[18]

A. Vélez-Santiago, Global regularity for a class of quasi{linear local and nonlocal elliptic equations on extension domains, J. Functional Analysis, 269 (2015), 1-46.  doi: 10.1016/j.jfa.2015.04.016.  Google Scholar

[19]

A. D. Venttsel', On boundary conditions for multidimensional diffusion processes, Teor. Veroyatnost. i Primenen, 4 (1959), 172-185; English translation: Theor. Probability Appl., 4 (1959), 164-177.  Google Scholar

[20]

M. Warma, An ultracontractivity property for semigroups generated by the p-Laplacian with nonlinear Wentzell-Robin boundary conditions, Adv. Differential Equations, 14 (2009), 771-800.   Google Scholar

[21]

M. Warma, The p-Laplace operator with the nonlocal Robin boundary conditions on arbitrary open sets, Ann. Mat. Pura Appl., 193 (2014), 203-235.  doi: 10.1007/s10231-012-0273-y.  Google Scholar

show all references

References:
[1]

D. E. Apushkinskaya and A. I. Nazarov, A survey of results on nonlinear Venttsel' problems, Application of Mathematics, 45 (2000), 69-80.  doi: 10.1023/A:1022288717033.  Google Scholar

[2]

D. E. Apushkinskaya and A. I. Nazarov, Linear two-phase Venttsel' problems, Ark. Mat., 39 (2001), 201-222.  doi: 10.1007/BF02384554.  Google Scholar

[3]

W. ArendtG. MetafuneD. Pallara and S. Romanelli, The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions, Semigroup Forum, 67 (2003), 247-261.  doi: 10.1007/s00233-002-0010-8.  Google Scholar

[4]

F. Brezzi and G. Gilardi, Fundamentals of P. D. E. for Numerical Analysis, in: Finite Element Handbook (ed.: H. Kardestuncer and D. H. Norrie), McGraw-Hill Book Co., New York, 1987.  Google Scholar

[5]

M. CefaloG. Dell'Acqua and M. R. Lancia, Numerical approximation of transmission problems across Koch-type highly conductive layers, Applied Mathematics and Computation, 218 (2012), 5453-5473.  doi: 10.1016/j.amc.2011.11.033.  Google Scholar

[6]

M. CefaloM. R. Lancia and H. Liang, Heat flow problems across fractal mixtures: Regularity results of the solutions and numerical approximation, Differ. Integral Equ., 26 (2013), 1027-1054.   Google Scholar

[7]

G. Goldstein Ruiz, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480.   Google Scholar

[8]

G. Hardy, J. Littlewood, G. Polya, Inequalities, Cambridge University Press, Cambridge, 1952.  Google Scholar

[9]

V. A. Kondrat'ev,, Boundary-value problems for elliptic equations in domains with conical or angular point, Trans. Moscow Math. Soc., 16 (1967), 209-292.   Google Scholar

[10]

M. R. Lancia, Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1493-1520.  doi: 10.3934/dcdss.2016060.  Google Scholar

[11]

M. R. LanciaA. Vélez-Santiago and P. Vernole, Quasi{linear Venttsel' problems with nonlocal boundary conditions, Nonlinear Anal. Real World Appl., 35 (2017), 265-291.  doi: 10.1016/j.nonrwa.2016.11.002.  Google Scholar

[12]

M. R. Lancia and P. Vernole, Venttsel' problems in fractal domains, J. Evol. Equ., 14 (2014), 681-712.  doi: 10.1007/s00028-014-0233-7.  Google Scholar

[13]

V. G. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer-Verlag, 2011. doi: 10. 1007/978-3-642-15564-2.  Google Scholar

[14]

A. I. Nazarov, On the nonstationary two-phase Venttsel problem in the transversal case, Problems in Mathematical Analysis, J. Math. Sci. (N. Y.), 122 (2004), 3251-3264.  doi: 10.1023/B:JOTH.0000031019.56619.4d.  Google Scholar

[15]

S. A. Nazarov, B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, de Gruyter, Berlin-New York, 1994. doi: 10. 1515/9783110848915. 525.  Google Scholar

[16]

J. Necas, Les Mèthodes Directes en Thèorie des Èquationes Elliptiques, Masson, Paris, 1967.  Google Scholar

[17]

A. Vélez-Santiago, Quasi-linear variable exponent boundary value problems with Wentzell-Robin and Wentzell boundary conditions, J. Functional Analysis, 266 (2014), 560-615.  doi: 10.1016/j.jfa.2013.10.017.  Google Scholar

[18]

A. Vélez-Santiago, Global regularity for a class of quasi{linear local and nonlocal elliptic equations on extension domains, J. Functional Analysis, 269 (2015), 1-46.  doi: 10.1016/j.jfa.2015.04.016.  Google Scholar

[19]

A. D. Venttsel', On boundary conditions for multidimensional diffusion processes, Teor. Veroyatnost. i Primenen, 4 (1959), 172-185; English translation: Theor. Probability Appl., 4 (1959), 164-177.  Google Scholar

[20]

M. Warma, An ultracontractivity property for semigroups generated by the p-Laplacian with nonlinear Wentzell-Robin boundary conditions, Adv. Differential Equations, 14 (2009), 771-800.   Google Scholar

[21]

M. Warma, The p-Laplace operator with the nonlocal Robin boundary conditions on arbitrary open sets, Ann. Mat. Pura Appl., 193 (2014), 203-235.  doi: 10.1007/s10231-012-0273-y.  Google Scholar

Figure 1.  A possible example of domain $\Omega$. In this case $N=9$ and $\alpha=\alpha_7$
[1]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[2]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[3]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[4]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[5]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[6]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[7]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[8]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[9]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[10]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[11]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[12]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[13]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[14]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[15]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[16]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[17]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[18]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[19]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[20]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (135)
  • HTML views (74)
  • Cited by (0)

[Back to Top]