• Previous Article
    Fractal tube formulas and a Minkowski measurability criterion for compact subsets of Euclidean spaces
  • DCDS-S Home
  • This Issue
  • Next Article
    Convergence and density results for parabolic quasi-linear Venttsel' problems in fractal domains
February  2019, 12(1): 91-103. doi: 10.3934/dcdss.2019006

Monotone wave fronts for $(p, q)$-Laplacian driven reaction-diffusion equations

1. 

Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy

2. 

Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Via Torino 155, Venezia Mestre, 30172, Italy

Received  March 2017 Revised  September 2017 Published  July 2018

We study the existence of monotone heteroclinic traveling waves for the
$
-dimensional reaction-diffusion equation
$u_t = (\vert u_x \vert^{p-2} u_x + \vert u_x \vert^{q-2} u_x)_x + f(u), \;\;\;\; t ∈ \mathbb{R}, \; x ∈ \mathbb{R}, $
where the non-homogeneous operator appearing on the right-hand side is of
$(p, q)$
-Laplacian type. Here we assume that
$2 ≤ q < p$
and
$f$
is a nonlinearity of Fisher type on
$[0, 1]$
, namely
$f(0) = 0 = f(1)$
and
$f > 0$
on
$]0, 1[\, $
. We give an estimate of the critical speed and we comment on the roles of
$p$
and
$q$
in the dynamics, providing some numerical simulations.
Citation: Maurizio Garrione, Marta Strani. Monotone wave fronts for $(p, q)$-Laplacian driven reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 91-103. doi: 10.3934/dcdss.2019006
References:
[1]

A. Audrito and J. L. Vazquez, The Fisher-KPP problem with doubly nonlinear diffusion, J. Differential Equations, 263 (2017), 7647-7708.  doi: 10.1016/j.jde.2017.08.025.  Google Scholar

[2]

R. BartoloA. M. Candela and A. Salvatore, On a class of superlinear $(p, q)$-Laplacian type equations on $\mathbb{R}^N$, J. Math. Anal. Appl., 438 (2016), 29-41.  doi: 10.1016/j.jmaa.2016.01.049.  Google Scholar

[3]

V. BenciD. Fortunato and L. Pisani, Soliton like solutions of a Lorentz invariant equation in dimension $3$, Rev. Math. Phys., 10 (1998), 315-344.  doi: 10.1142/S0129055X98000100.  Google Scholar

[4]

D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations, in Handbook of Differential Equations: Ordinary Differential Equations, (eds. A. Canada, P. Drábek and A. Fonda), Elsevier, Amsterdam, 3 (2006), 103–202. doi: 10.1016/S1874-5725(06)80006-4.  Google Scholar

[5]

L. Cherfils and Y. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with $p\And q$-Laplacian, Commun. Pure Appl. Anal., 4 (2005), 9-22.  doi: 10.3934/cpaa.2005.4.9.  Google Scholar

[6]

I. Coelho and L. Sanchez, Traveling wave profiles in some models with nonlinear diffusion, Appl. Math. Comput., 235 (2014), 469-481.  doi: 10.1016/j.amc.2014.02.104.  Google Scholar

[7]

R. EnguiçaA. Gavioli and L. Sanchez, A class of singular first order differential equations with applications in reaction-diffusion, Discrete Contin. Dyn. Syst., 33 (2013), 173-191.  doi: 10.3934/dcds.2013.33.173.  Google Scholar

[8]

E. FeireislD. HilhorstH. Petzeltová and P. Takáč, Front propagation in nonlinear parabolic equations, J. London Math. Soc., 90 (2014), 551-572.  doi: 10.1112/jlms/jdu039.  Google Scholar

[9]

R. A. Fisher, The wave of advance of advantageous genus, Ann. Eugenics, 7 (1937), 355-369.   Google Scholar

[10]

M. Garrione and L. Sanchez, Monotone traveling waves for reaction-diffusion equations involving the curvature operator, Boundary Value Probl., 2015 (2015), 31 pp. doi: 10.1186/s13661-015-0303-y.  Google Scholar

[11]

M. Garrione and M. Strani, Heteroclinic traveling fronts for a generalized Fisher-Burgers equation with saturating diffusion, preprint, arXiv: 1702.03782. Google Scholar

[12]

A. Gavioli and L. Sanchez, A variational property of critical speed to travelling waves in the presence of nonlinear diffusion, Appl. Math. Lett., 48 (2015), 47-54.  doi: 10.1016/j.aml.2015.03.011.  Google Scholar

[13]

C. J. He and G. B. Li, The regularity of weak solutions to nonlinear scalar field elliptic equations containing $p\And q$-Laplacians, Ann. Acad. Sci. Fenn. Math., 33 (2008), 337-371.   Google Scholar

[14]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, (French) [Study of the diffusion equation with growth of the matter quantity and applications to a biological problem], Mosc. Univ. Math. Bull., 1 (1937), 1–25. Google Scholar

[15]

Y. Yang and K. Perera, $(N, q)$-Laplacian problems with critical Trudinger-Moser nonlinearities, Bull. London Math. Soc., 48 (2016), 260-270.  doi: 10.1112/blms/bdw002.  Google Scholar

show all references

References:
[1]

A. Audrito and J. L. Vazquez, The Fisher-KPP problem with doubly nonlinear diffusion, J. Differential Equations, 263 (2017), 7647-7708.  doi: 10.1016/j.jde.2017.08.025.  Google Scholar

[2]

R. BartoloA. M. Candela and A. Salvatore, On a class of superlinear $(p, q)$-Laplacian type equations on $\mathbb{R}^N$, J. Math. Anal. Appl., 438 (2016), 29-41.  doi: 10.1016/j.jmaa.2016.01.049.  Google Scholar

[3]

V. BenciD. Fortunato and L. Pisani, Soliton like solutions of a Lorentz invariant equation in dimension $3$, Rev. Math. Phys., 10 (1998), 315-344.  doi: 10.1142/S0129055X98000100.  Google Scholar

[4]

D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations, in Handbook of Differential Equations: Ordinary Differential Equations, (eds. A. Canada, P. Drábek and A. Fonda), Elsevier, Amsterdam, 3 (2006), 103–202. doi: 10.1016/S1874-5725(06)80006-4.  Google Scholar

[5]

L. Cherfils and Y. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with $p\And q$-Laplacian, Commun. Pure Appl. Anal., 4 (2005), 9-22.  doi: 10.3934/cpaa.2005.4.9.  Google Scholar

[6]

I. Coelho and L. Sanchez, Traveling wave profiles in some models with nonlinear diffusion, Appl. Math. Comput., 235 (2014), 469-481.  doi: 10.1016/j.amc.2014.02.104.  Google Scholar

[7]

R. EnguiçaA. Gavioli and L. Sanchez, A class of singular first order differential equations with applications in reaction-diffusion, Discrete Contin. Dyn. Syst., 33 (2013), 173-191.  doi: 10.3934/dcds.2013.33.173.  Google Scholar

[8]

E. FeireislD. HilhorstH. Petzeltová and P. Takáč, Front propagation in nonlinear parabolic equations, J. London Math. Soc., 90 (2014), 551-572.  doi: 10.1112/jlms/jdu039.  Google Scholar

[9]

R. A. Fisher, The wave of advance of advantageous genus, Ann. Eugenics, 7 (1937), 355-369.   Google Scholar

[10]

M. Garrione and L. Sanchez, Monotone traveling waves for reaction-diffusion equations involving the curvature operator, Boundary Value Probl., 2015 (2015), 31 pp. doi: 10.1186/s13661-015-0303-y.  Google Scholar

[11]

M. Garrione and M. Strani, Heteroclinic traveling fronts for a generalized Fisher-Burgers equation with saturating diffusion, preprint, arXiv: 1702.03782. Google Scholar

[12]

A. Gavioli and L. Sanchez, A variational property of critical speed to travelling waves in the presence of nonlinear diffusion, Appl. Math. Lett., 48 (2015), 47-54.  doi: 10.1016/j.aml.2015.03.011.  Google Scholar

[13]

C. J. He and G. B. Li, The regularity of weak solutions to nonlinear scalar field elliptic equations containing $p\And q$-Laplacians, Ann. Acad. Sci. Fenn. Math., 33 (2008), 337-371.   Google Scholar

[14]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, (French) [Study of the diffusion equation with growth of the matter quantity and applications to a biological problem], Mosc. Univ. Math. Bull., 1 (1937), 1–25. Google Scholar

[15]

Y. Yang and K. Perera, $(N, q)$-Laplacian problems with critical Trudinger-Moser nonlinearities, Bull. London Math. Soc., 48 (2016), 260-270.  doi: 10.1112/blms/bdw002.  Google Scholar

Figure 1.  The graph of $\mathcal{G}_c(\beta)$ for $p = 4$, $q = 3$, $L_+ = 6$ and $c$ given by 9$_{(i)}$
Figure 2.  The solution of 25 with $p = 4$, $q = 2$, $H = 1$, and $f(v) = v^{q'-1} (1-v)$, for $c = 2$. Actually, with the notations used throughout the section, here $L = 1$, $q = q' = 2$, so the lower bound for $c^*$ is equal to $2$ and it actually seems that $c = 2$ is already an admissible speed. Notice that $y$ is indeed very small, so the process appears ruled by the $q$-Laplacian
Figure 3.  The solution of the differential equation in 25 satisfying $y(H) = 0$, with $p = 4$, $q = 2$, $H = 7$, $f(v) = v^{q'-1} (H-v)$ and $c = 2\sqrt{7}$; here $L = 7$ and the bound 27 would give $c^* \geq 2\sqrt{7}$. However, this speed appears far from being admissible and, indeed, $y$ reaches values much greater than $1$, for which the $p$-Laplacian rules the diffusion
Figure 4.  The solution of 25 with $p = 4$, $q = 2$, $Q(s) = \tfrac{q-1}{q} \vert s \vert^q - \tfrac{p-1}{p} \vert s \vert^p$, $f(v) = v^{q'-1} (1-v)$ and $c = 2$; here $y$ stays well below the threshold of invertibility of $Q$, so that the situation roughly appears the same as in Figure 2 and the bound given by 12 already gives an admissible speed
Figure 5.  The solution of the differential equation in 25 satisfying $y(H) = 0$, for $H = 4$, $f(v) = v^{q'-1} (4-v)$ and the other positions as in Figure 4. Here the derivative of the wave profile has to increase too much in order for $y$ to connect the equilibria $0$ and $4$, so that we enter the non-invertibility region for $Q$. Thus, we are not able to find any solution of 5
[1]

Elena Trofimchuk, Sergei Trofimchuk. Admissible wavefront speeds for a single species reaction-diffusion equation with delay. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 407-423. doi: 10.3934/dcds.2008.20.407

[2]

L. Cherfils, Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian. Communications on Pure & Applied Analysis, 2005, 4 (1) : 9-22. doi: 10.3934/cpaa.2005.4.9

[3]

Antoine Mellet, Jean-Michel Roquejoffre, Yannick Sire. Generalized fronts for one-dimensional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 303-312. doi: 10.3934/dcds.2010.26.303

[4]

Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011

[5]

Masaharu Taniguchi. Traveling fronts in perturbed multistable reaction-diffusion equations. Conference Publications, 2011, 2011 (Special) : 1368-1377. doi: 10.3934/proc.2011.2011.1368

[6]

Henri Berestycki, Guillemette Chapuisat. Traveling fronts guided by the environment for reaction-diffusion equations. Networks & Heterogeneous Media, 2013, 8 (1) : 79-114. doi: 10.3934/nhm.2013.8.79

[7]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[8]

Zhi-Xian Yu, Rong Yuan. Traveling wave fronts in reaction-diffusion systems with spatio-temporal delay and applications. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 709-728. doi: 10.3934/dcdsb.2010.13.709

[9]

Wei-Jie Sheng, Wan-Tong Li. Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2681-2704. doi: 10.3934/dcds.2017115

[10]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[11]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

[12]

Yacheng Liu, Runzhang Xu. Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 171-189. doi: 10.3934/dcdsb.2007.7.171

[13]

Hans F. Weinberger, Kohkichi Kawasaki, Nanako Shigesada. Spreading speeds for a partially cooperative 2-species reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1087-1098. doi: 10.3934/dcds.2009.23.1087

[14]

Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681

[15]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[16]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

[17]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-21. doi: 10.3934/dcdss.2020083

[18]

Der-Chen Chang, Jie Xiao. $L^q$-Extensions of $L^p$-spaces by fractional diffusion equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1905-1920. doi: 10.3934/dcds.2015.35.1905

[19]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[20]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (78)
  • HTML views (30)
  • Cited by (0)

Other articles
by authors

[Back to Top]