• Previous Article
    Fractal tube formulas and a Minkowski measurability criterion for compact subsets of Euclidean spaces
  • DCDS-S Home
  • This Issue
  • Next Article
    Convergence and density results for parabolic quasi-linear Venttsel' problems in fractal domains
February  2019, 12(1): 91-103. doi: 10.3934/dcdss.2019006

Monotone wave fronts for $(p, q)$-Laplacian driven reaction-diffusion equations

1. 

Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy

2. 

Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Via Torino 155, Venezia Mestre, 30172, Italy

Received  March 2017 Revised  September 2017 Published  July 2018

We study the existence of monotone heteroclinic traveling waves for the
$
-dimensional reaction-diffusion equation
$u_t = (\vert u_x \vert^{p-2} u_x + \vert u_x \vert^{q-2} u_x)_x + f(u), \;\;\;\; t ∈ \mathbb{R}, \; x ∈ \mathbb{R}, $
where the non-homogeneous operator appearing on the right-hand side is of
$(p, q)$
-Laplacian type. Here we assume that
$2 ≤ q < p$
and
$f$
is a nonlinearity of Fisher type on
$[0, 1]$
, namely
$f(0) = 0 = f(1)$
and
$f > 0$
on
$]0, 1[\, $
. We give an estimate of the critical speed and we comment on the roles of
$p$
and
$q$
in the dynamics, providing some numerical simulations.
Citation: Maurizio Garrione, Marta Strani. Monotone wave fronts for $(p, q)$-Laplacian driven reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 91-103. doi: 10.3934/dcdss.2019006
References:
[1]

A. Audrito and J. L. Vazquez, The Fisher-KPP problem with doubly nonlinear diffusion, J. Differential Equations, 263 (2017), 7647-7708.  doi: 10.1016/j.jde.2017.08.025.  Google Scholar

[2]

R. BartoloA. M. Candela and A. Salvatore, On a class of superlinear $(p, q)$-Laplacian type equations on $\mathbb{R}^N$, J. Math. Anal. Appl., 438 (2016), 29-41.  doi: 10.1016/j.jmaa.2016.01.049.  Google Scholar

[3]

V. BenciD. Fortunato and L. Pisani, Soliton like solutions of a Lorentz invariant equation in dimension $3$, Rev. Math. Phys., 10 (1998), 315-344.  doi: 10.1142/S0129055X98000100.  Google Scholar

[4]

D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations, in Handbook of Differential Equations: Ordinary Differential Equations, (eds. A. Canada, P. Drábek and A. Fonda), Elsevier, Amsterdam, 3 (2006), 103–202. doi: 10.1016/S1874-5725(06)80006-4.  Google Scholar

[5]

L. Cherfils and Y. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with $p\And q$-Laplacian, Commun. Pure Appl. Anal., 4 (2005), 9-22.  doi: 10.3934/cpaa.2005.4.9.  Google Scholar

[6]

I. Coelho and L. Sanchez, Traveling wave profiles in some models with nonlinear diffusion, Appl. Math. Comput., 235 (2014), 469-481.  doi: 10.1016/j.amc.2014.02.104.  Google Scholar

[7]

R. EnguiçaA. Gavioli and L. Sanchez, A class of singular first order differential equations with applications in reaction-diffusion, Discrete Contin. Dyn. Syst., 33 (2013), 173-191.  doi: 10.3934/dcds.2013.33.173.  Google Scholar

[8]

E. FeireislD. HilhorstH. Petzeltová and P. Takáč, Front propagation in nonlinear parabolic equations, J. London Math. Soc., 90 (2014), 551-572.  doi: 10.1112/jlms/jdu039.  Google Scholar

[9]

R. A. Fisher, The wave of advance of advantageous genus, Ann. Eugenics, 7 (1937), 355-369.   Google Scholar

[10]

M. Garrione and L. Sanchez, Monotone traveling waves for reaction-diffusion equations involving the curvature operator, Boundary Value Probl., 2015 (2015), 31 pp. doi: 10.1186/s13661-015-0303-y.  Google Scholar

[11]

M. Garrione and M. Strani, Heteroclinic traveling fronts for a generalized Fisher-Burgers equation with saturating diffusion, preprint, arXiv: 1702.03782. Google Scholar

[12]

A. Gavioli and L. Sanchez, A variational property of critical speed to travelling waves in the presence of nonlinear diffusion, Appl. Math. Lett., 48 (2015), 47-54.  doi: 10.1016/j.aml.2015.03.011.  Google Scholar

[13]

C. J. He and G. B. Li, The regularity of weak solutions to nonlinear scalar field elliptic equations containing $p\And q$-Laplacians, Ann. Acad. Sci. Fenn. Math., 33 (2008), 337-371.   Google Scholar

[14]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, (French) [Study of the diffusion equation with growth of the matter quantity and applications to a biological problem], Mosc. Univ. Math. Bull., 1 (1937), 1–25. Google Scholar

[15]

Y. Yang and K. Perera, $(N, q)$-Laplacian problems with critical Trudinger-Moser nonlinearities, Bull. London Math. Soc., 48 (2016), 260-270.  doi: 10.1112/blms/bdw002.  Google Scholar

show all references

References:
[1]

A. Audrito and J. L. Vazquez, The Fisher-KPP problem with doubly nonlinear diffusion, J. Differential Equations, 263 (2017), 7647-7708.  doi: 10.1016/j.jde.2017.08.025.  Google Scholar

[2]

R. BartoloA. M. Candela and A. Salvatore, On a class of superlinear $(p, q)$-Laplacian type equations on $\mathbb{R}^N$, J. Math. Anal. Appl., 438 (2016), 29-41.  doi: 10.1016/j.jmaa.2016.01.049.  Google Scholar

[3]

V. BenciD. Fortunato and L. Pisani, Soliton like solutions of a Lorentz invariant equation in dimension $3$, Rev. Math. Phys., 10 (1998), 315-344.  doi: 10.1142/S0129055X98000100.  Google Scholar

[4]

D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations, in Handbook of Differential Equations: Ordinary Differential Equations, (eds. A. Canada, P. Drábek and A. Fonda), Elsevier, Amsterdam, 3 (2006), 103–202. doi: 10.1016/S1874-5725(06)80006-4.  Google Scholar

[5]

L. Cherfils and Y. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with $p\And q$-Laplacian, Commun. Pure Appl. Anal., 4 (2005), 9-22.  doi: 10.3934/cpaa.2005.4.9.  Google Scholar

[6]

I. Coelho and L. Sanchez, Traveling wave profiles in some models with nonlinear diffusion, Appl. Math. Comput., 235 (2014), 469-481.  doi: 10.1016/j.amc.2014.02.104.  Google Scholar

[7]

R. EnguiçaA. Gavioli and L. Sanchez, A class of singular first order differential equations with applications in reaction-diffusion, Discrete Contin. Dyn. Syst., 33 (2013), 173-191.  doi: 10.3934/dcds.2013.33.173.  Google Scholar

[8]

E. FeireislD. HilhorstH. Petzeltová and P. Takáč, Front propagation in nonlinear parabolic equations, J. London Math. Soc., 90 (2014), 551-572.  doi: 10.1112/jlms/jdu039.  Google Scholar

[9]

R. A. Fisher, The wave of advance of advantageous genus, Ann. Eugenics, 7 (1937), 355-369.   Google Scholar

[10]

M. Garrione and L. Sanchez, Monotone traveling waves for reaction-diffusion equations involving the curvature operator, Boundary Value Probl., 2015 (2015), 31 pp. doi: 10.1186/s13661-015-0303-y.  Google Scholar

[11]

M. Garrione and M. Strani, Heteroclinic traveling fronts for a generalized Fisher-Burgers equation with saturating diffusion, preprint, arXiv: 1702.03782. Google Scholar

[12]

A. Gavioli and L. Sanchez, A variational property of critical speed to travelling waves in the presence of nonlinear diffusion, Appl. Math. Lett., 48 (2015), 47-54.  doi: 10.1016/j.aml.2015.03.011.  Google Scholar

[13]

C. J. He and G. B. Li, The regularity of weak solutions to nonlinear scalar field elliptic equations containing $p\And q$-Laplacians, Ann. Acad. Sci. Fenn. Math., 33 (2008), 337-371.   Google Scholar

[14]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, (French) [Study of the diffusion equation with growth of the matter quantity and applications to a biological problem], Mosc. Univ. Math. Bull., 1 (1937), 1–25. Google Scholar

[15]

Y. Yang and K. Perera, $(N, q)$-Laplacian problems with critical Trudinger-Moser nonlinearities, Bull. London Math. Soc., 48 (2016), 260-270.  doi: 10.1112/blms/bdw002.  Google Scholar

Figure 1.  The graph of $\mathcal{G}_c(\beta)$ for $p = 4$, $q = 3$, $L_+ = 6$ and $c$ given by 9$_{(i)}$
Figure 2.  The solution of 25 with $p = 4$, $q = 2$, $H = 1$, and $f(v) = v^{q'-1} (1-v)$, for $c = 2$. Actually, with the notations used throughout the section, here $L = 1$, $q = q' = 2$, so the lower bound for $c^*$ is equal to $2$ and it actually seems that $c = 2$ is already an admissible speed. Notice that $y$ is indeed very small, so the process appears ruled by the $q$-Laplacian
Figure 3.  The solution of the differential equation in 25 satisfying $y(H) = 0$, with $p = 4$, $q = 2$, $H = 7$, $f(v) = v^{q'-1} (H-v)$ and $c = 2\sqrt{7}$; here $L = 7$ and the bound 27 would give $c^* \geq 2\sqrt{7}$. However, this speed appears far from being admissible and, indeed, $y$ reaches values much greater than $1$, for which the $p$-Laplacian rules the diffusion
Figure 4.  The solution of 25 with $p = 4$, $q = 2$, $Q(s) = \tfrac{q-1}{q} \vert s \vert^q - \tfrac{p-1}{p} \vert s \vert^p$, $f(v) = v^{q'-1} (1-v)$ and $c = 2$; here $y$ stays well below the threshold of invertibility of $Q$, so that the situation roughly appears the same as in Figure 2 and the bound given by 12 already gives an admissible speed
Figure 5.  The solution of the differential equation in 25 satisfying $y(H) = 0$, for $H = 4$, $f(v) = v^{q'-1} (4-v)$ and the other positions as in Figure 4. Here the derivative of the wave profile has to increase too much in order for $y$ to connect the equilibria $0$ and $4$, so that we enter the non-invertibility region for $Q$. Thus, we are not able to find any solution of 5
[1]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[5]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[6]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[7]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[8]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[9]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[10]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[11]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[14]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[15]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[16]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[17]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[18]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[19]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[20]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (145)
  • HTML views (78)
  • Cited by (0)

Other articles
by authors

[Back to Top]