February  2019, 12(1): 105-117. doi: 10.3934/dcdss.2019007

Fractal tube formulas and a Minkowski measurability criterion for compact subsets of Euclidean spaces

1. 

Department of Mathematics, University of California, Riverside, CA 92521-0135, USA

2. 

Department of Applied Mathematics, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia

* Corresponding author

Received  October 2016 Revised  May 2017 Published  July 2018

Fund Project: The research of Michel L. Lapidus was partially supported by the National Science Foundation under grants DMS-0707524 and DMS-1107750, as well as by the Institut des Hautes Études Scientifiques (IHÉS) where the first author was a visiting professor in the Spring of 2012 while part of this research was completed. The research of Goran Radunović and Darko Žubrinić was supported in part by the Croatian Science Foundation under the project IP-2014-09-2285 and by the Franco-Croatian PHC-COGITO project

We establish pointwise and distributional fractal tube formulas for a large class of compact subsets of Euclidean spaces of arbitrary dimensions. These formulas are expressed as sums of residues of suitable meromorphic functions over the complex dimensions of the compact set under consideration (i.e., over the poles of its fractal zeta function). Our results generalize to higher dimensions (and in a significant way) the corresponding ones previously obtained for fractal strings by the first author and van Frankenhuijsen. They are illustrated by several examples and applied to yield a new Minkowski measurability criterion.

Citation: Michel L. Lapidus, Goran Radunović, Darko Žubrinić. Fractal tube formulas and a Minkowski measurability criterion for compact subsets of Euclidean spaces. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 105-117. doi: 10.3934/dcdss.2019007
References:
[1]

T. Bedford and A. M. Fisher, Analogues of the Lebesgue density theorem for fractal sets of reals and integers, Proc. London Math. Soc.(3), 64 (1992), 95-124.  doi: 10.1112/plms/s3-64.1.95.  Google Scholar

[2]

M. V. Berry, Distribution of modes in fractal resonators, Structural Stability in Physics (W. Güttinger and H. Eikemeier, eds.), pp. 51–53, Springer Ser. Synergetics, 4, Springer, Berlin, 1979. doi: 10.1007/978-3-642-67363-4_7.  Google Scholar

[3]

M. V. Berry, Some geometric aspects of wave motion: Wavefront dislocations, diffraction catastrophes, diffractals, Geometry of the Laplace Operator, Proc. Sympos. Pure Math., 36, Amer. Math. Soc., Providence, R. I., 1980, 13–38.  Google Scholar

[4]

W. Blaschke, Integralgeometrie, Chelsea, New York, 1949. Google Scholar

[5]

J. Brossard and R. Carmona, Can one hear the dimension of a fractal?, Commun. Math. Phys., 104 (1986), 103-122.  doi: 10.1007/BF01210795.  Google Scholar

[6]

D. Carfì, M. L. Lapidus, E. P. J. Pearse and M. van Frankenhuijsen (eds.), Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics I, Fractals in Pure Mathematics, Contemporary Mathematics, vol. 600, Amer. Math. Soc., Providence, R. I., 2013. Google Scholar

[7]

A. DenizŞ. KoçakY. Özdemir and A. E. Üreyen, Tube volumes via functional equations, J. Geom., 106 (2015), 153-162.  doi: 10.1007/s00022-014-0241-3.  Google Scholar

[8]

K. J. Falconer, On the Minkowski measurability of fractals, Proc. Amer. Math. Soc., 123 (1995), 1115-1124.  doi: 10.1090/S0002-9939-1995-1224615-4.  Google Scholar

[9]

H. Federer, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), 418-491.  doi: 10.1090/S0002-9947-1959-0110078-1.  Google Scholar

[10]

J. Fleckinger and D. Vassiliev, An example of a two-term asymptotics for the "counting function" of a fractal drum, Trans. Amer. Math. Soc., 337 (1993), 99-116.  doi: 10.2307/2154311.  Google Scholar

[11]

M. Frantz, Lacunarity, Minkowski content, and self-similar sets in $\mathbb{R}$, in: Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot (M. L. Lapidus and M. van Frankenhuijsen, eds.), Proc. Sympos. Pure Math., 72, Part 1, Amer. Math. Soc., Providence, R. I., 2004, 77–91.  Google Scholar

[12]

D. Gatzouras, Lacunarity of self-similar and stochastically self-similar sets, Trans. Amer. Math. Soc., 352 (2000), 1953-1983.  doi: 10.1090/S0002-9947-99-02539-8.  Google Scholar

[13]

A. Gray, Tubes, 2nd edn., Progress in Math., vol. 221, Birkhäuser, Boston, 2004. doi: 10.1007/978-3-0348-7966-8.  Google Scholar

[14]

C. Q. He and M. L. Lapidus, Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function, Memoirs Amer. Math. Soc., 127 (1997), x+97 pp. doi: 10.1090/memo/0608.  Google Scholar

[15]

D. HugG. Last and W. Weil, A local Steiner-type formula for general closed sets and applications, Math. Z., 246 (2004), 237-272.  doi: 10.1007/s00209-003-0597-9.  Google Scholar

[16]

D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Accademia Nazionale dei Lincei, Cambridge Univ. Press, Cambridge, 1997.  Google Scholar

[17]

S. Kombrink, A survey on Minkowski measurability of self-similar sets and self-conformal fractals in $\mathbb{R}^d$, Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics, I. Fractals in pure mathematics, 135–159, Contemp. Math., 600, Amer. Math. Soc., Providence, RI, 2013. doi: 10.1090/conm/600/11931.  Google Scholar

[18]

J. Korevaar, Tauberian Theory: A Century of Developments, Springer-Verlag, Heidelberg, 2004. doi: 10.1007/978-3-662-10225-1.  Google Scholar

[19]

O. Kowalski, Additive volume invariants of Riemannian manifolds, Acta Math., 145 (1980), 205-225.  doi: 10.1007/BF02414190.  Google Scholar

[20]

M. L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Trans. Amer. Math. Soc., 325 (1991), 465-529.  doi: 10.1090/S0002-9947-1991-0994168-5.  Google Scholar

[21]

M. L. Lapidus, Spectral and fractal geometry: From the Weyl–Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function, in: Differential Equations and Mathematical Physics (C. Bennewitz, ed.), Proc. Fourth UAB Internat. Conf. (Birmingham, March 1990), Academic Press, New York, 186 (1992), 151–181. doi: 10.1016/S0076-5392(08)63379-2.  Google Scholar

[22]

M. L. Lapidus, Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the Weyl–Berry conjecture, in: Ordinary and Partial Differential Equations (B. D. Sleeman and R. J. Jarvis, eds.), vol. IV, Proc. Twelfth Internat. Conf. (Dundee, Scotland, UK, June 1992), Pitman Research Notes in Mathematics Series, vol. 289, Longman Scientific and Technical, London, 1993, 126–209.  Google Scholar

[23]

M. L. Lapidus, In Search of the Riemann Zeros: Strings, Fractal Membranes and Noncommutative Spacetimes, research monograph, Amer. Math. Soc., Providence, R. I., 2008. doi: 10.1090/mbk/051.  Google Scholar

[24]

M. L. Lapidus, The sound of fractal strings and the Riemann hypothesis, in: Analytic Number Theory: In Honor of Helmut Maier's 60th Birthday (C. B. Pomerance and T. Rassias, eds.), Springer Internat. Publ. Switzerland, Cham, 2015, 201–252.  Google Scholar

[25]

M. L. Lapidus and H. Maier, Hypothèse de Riemann, cordes fractales vibrantes et conjecture de Weyl-Berry modifiée, C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 19-24.   Google Scholar

[26]

M. L. Lapidus and H. Maier, The Riemann hypothesis and inverse spectral problems for fractal strings, J. London Math. Soc.(2), 52 (1995), 15-34.  doi: 10.1112/jlms/52.1.15.  Google Scholar

[27]

M. L. Lapidus and E. P. J. Pearse, Tube formulas and complex dimensions of self-similar tilings, Acta Applicandae Mathematicae, 112 (2010), 91-136.  doi: 10.1007/s10440-010-9562-x.  Google Scholar

[28]

M. L. LapidusE. P. J. Pearse and S. Winter, Pointwise tube formulas for fractal sprays and self-similar tilings with arbitrary generators, Adv. in Math., 227 (2011), 1349-1398.  doi: 10.1016/j.aim.2011.03.004.  Google Scholar

[29]

M. L. Lapidus, E. P. J. Pearse and S. Winter, Minkowski measurability results for self-similar tilings and fractals with monophase generators, Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics, I. Fractals in pure mathematics, 185–203, Contemp. Math., 600, Amer. Math. Soc., Providence, RI, 2013. doi: 10.1090/conm/600/11951.  Google Scholar

[30]

M. L. Lapidus and C. Pomerance, Fonction zêta de Riemann et conjecture de Weyl-Berry pour les tambours fractals, C. R. Acad. Sci. Paris Sér. I Math., 310 (1990), 343-348.   Google Scholar

[31]

M. L. Lapidus and C. Pomerance, The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums, Proc. London Math. Soc.(3), 66 (1993), 41-69.  doi: 10.1112/plms/s3-66.1.41.  Google Scholar

[32]

M. L. Lapidus and C. Pomerance, Counterexamples to the modified Weyl-Berry conjecture on fractal drums, Math. Proc. Cambridge Philos. Soc., 119 (1996), 167-178.  doi: 10.1017/S0305004100074053.  Google Scholar

[33]

M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions, Springer Monographs in Mathematics, Springer, New York, 2017. doi: 10.1007/978-3-319-44706-3.  Google Scholar

[34]

M. L. Lapidus, G. Radunović and D. Žubrinić, Distance and tube zeta functions of fractals and arbitrary compact sets, Adv. in Math., 307 (2017), 1215–1267. (Also: e-print, arXiv: 1506.03525v3, [math-ph], 2016; IHES preprint, IHES/M/15/15, 2015.) doi: 10.1016/j.aim.2016.11.034.  Google Scholar

[35]

M. L. Lapidus, G. Radunović and D. Žubrinić, Complex dimensions of fractals and meromorphic extensions of fractal zeta functions, J. Math. Anal. Appl., 453 (2017), 458–484. (Also: e-print, arXiv: 1508.04784v4, [math-ph], 2016.) doi: 10.1016/j.jmaa.2017.03.059.  Google Scholar

[36]

M. L. Lapidus, G. Radunović and D. Žubrinić, Zeta functions and complex dimensions of relative fractal drums: Theory, examples and applications, Dissertationes Math. (Rozprawy Mat.), 526 (2017), 1–105. (Also: e-print, arXiv: 1603.00946v3, [math-ph], 2016.) doi: 10.4064/dm757-4-2017.  Google Scholar

[37]

M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal tube formulas for compact sets and relative fractal drums: Oscillations, complex dimensions and fractality, J. Fractal Geom., 5 (2018), 1–119. (DOI: 10.4171/JFG/57)(Also: e-print, arXiv:1604.08014v5, [math-ph], 2018.) doi: 10.4171/JFG/57.  Google Scholar

[38]

M. L. Lapidus, G. Radunović and D. Žubrinić, Minkowski measurability criteria for compact sets and relative fractal drums in Euclidean spaces, submitted for publication in the Proceedings of the 6th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals (June 2017), World Scientific, Singapore and London, 2019. (Also: e-print, arXiv: 1609.04498v2, [math-ph], 2018.) Google Scholar

[39]

M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal zeta functions and complex dimensions of relative fractal drums, J. of Fixed Point Theory and Appl., 15 (2014), 321–378. Festschrift issue in honor of Haim Brezis' 70th birthday. doi: 10.1007/s11784-014-0207-y.  Google Scholar

[40]

M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal zeta functions and complex dimensions: A general higher-dimensional theory, in: Fractal Geometry and Stochastics V (C. Bandt, K. Falconer and M. Zähle, eds.), Proc. Fifth Internat. Conf. (Tabarz, Germany, March 2014), Progress in Probability, vol. 70, Birkhäuser/Springer Internat., Basel, Boston and Berlin, 2015, 229–257. doi: 10.1007/978-3-319-18660-3_13.  Google Scholar

[41]

M. L. Lapidus and M. van Frankenhuijsen, Fractality, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings, 2nd rev. and enl. edn. (of the 2006 edn.), Springer Monographs in Mathematics, Springer, New York, 2006. doi: 10.1007/978-0-387-35208-4.  Google Scholar

[42]

B. B. Mandelbrot, The Fractal Geometry of Nature, rev. and enl. edn. (of the 1977 edn.), W. H. Freeman, New York, 1983. Google Scholar

[43]

B. B. Mandelbrot, Measures of fractal lacunarity: Minkowski content and alternatives, in: Fractal Geometry and Stochastics (C. Bandt, S. Graf and M. Zähle, eds.), Progress in Probability, vol. 37, Birkhäuser-Verlag, Basel, 1995, 15–42.  Google Scholar

[44]

H. Minkowski, Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs, in: Gesammelte Abhandlungen von Hermann Minkowski (part Ⅱ, Ch. XXV), Chelsea, New York, 1967, 131–229. Google Scholar

[45]

L. Olsen, Multifractal tubes: Multifractal zeta functions, multifractal Steiner tube formulas and explicit formulas, Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics, I. Fractals in pure mathematics, 291–326, Contemp. Math., 600, Amer. Math. Soc., Providence, RI, 2013. doi: 10.1090/conm/600/11920.  Google Scholar

[46]

L. Olsen, Multifractal tubes, in: Further Developments in Fractals and Related Fields, Trends in Mathematics, Birkhäuser/Springer, New York, 2013, 161–191. doi: 10.1007/978-0-8176-8400-6_9.  Google Scholar

[47]

J. Rataj and S. Winter, Characterization of Minkowski measurability in terms of surface area, J. Math. Anal. Appl., 400 (2013), 120-132.  doi: 10.1016/j.jmaa.2012.10.059.  Google Scholar

[48]

R. Schneider, Convex Bodies: The Brunn–Minkowski Theory, Cambridge University Press, Cambridge, 1993. doi: 10.1017/CBO9780511526282.  Google Scholar

[49]

L. Schwartz, Théorie des Distributions, rev. and enl. edn. (of the 1951 edn.), Hermann, Paris, 1966.  Google Scholar

[50]

J. Steiner, Über parallele Flächen, Monatsb. preuss. Akad. Wiss., Berlin, 1840, 114–118. Google Scholar

[51]

E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Chelsea Publishing Co., New York, 1986.  Google Scholar

[52]

C. Tricot, Mesures et Dimensions, Thèse de Doctorat d'Etat Es Sciences Mathématiques, Université Paris-Sud, Orsay, France, 1983. Google Scholar

[53]

H. Weyl, On the volume of tubes, Amer. J. Math., 61 (1939), 461-472.  doi: 10.2307/2371513.  Google Scholar

[54]

S. Winter, Curvature measures and fractals, Dissertationes Math. (Rozprawy Mat.), 453 (2008), 1-66.  doi: 10.4064/dm453-0-1.  Google Scholar

[55]

S. Winter and M. Zähle, Fractal curvature measures of self-similar sets, Adv. Geom., 13 (2013), 229-244.  doi: 10.1515/advgeom-2012-0026.  Google Scholar

[56]

M. Zähle, Curvatures and currents for unions of sets with positive reach, Geom. Dedicata, 23 (1987), 155-171.  doi: 10.1007/BF00181273.  Google Scholar

[57]

M. Zähle, Curvature measures of fractal sets, Fractal Geometry and Dynamical Systems in pure and Applied Mathematics, I. Fractals in pure mathematics, 381–399, Contemp. Math., 600, Amer. Math. Soc., Providence, RI, 2013. doi: 10.1090/conm/600/11953.  Google Scholar

[58]

D. Žubrinić, Analysis of Minkowski contents of fractal sets and applications, Real Anal. Exchange, 31 (2005/2006), 315-354.  doi: 10.14321/realanalexch.31.2.0315.  Google Scholar

show all references

References:
[1]

T. Bedford and A. M. Fisher, Analogues of the Lebesgue density theorem for fractal sets of reals and integers, Proc. London Math. Soc.(3), 64 (1992), 95-124.  doi: 10.1112/plms/s3-64.1.95.  Google Scholar

[2]

M. V. Berry, Distribution of modes in fractal resonators, Structural Stability in Physics (W. Güttinger and H. Eikemeier, eds.), pp. 51–53, Springer Ser. Synergetics, 4, Springer, Berlin, 1979. doi: 10.1007/978-3-642-67363-4_7.  Google Scholar

[3]

M. V. Berry, Some geometric aspects of wave motion: Wavefront dislocations, diffraction catastrophes, diffractals, Geometry of the Laplace Operator, Proc. Sympos. Pure Math., 36, Amer. Math. Soc., Providence, R. I., 1980, 13–38.  Google Scholar

[4]

W. Blaschke, Integralgeometrie, Chelsea, New York, 1949. Google Scholar

[5]

J. Brossard and R. Carmona, Can one hear the dimension of a fractal?, Commun. Math. Phys., 104 (1986), 103-122.  doi: 10.1007/BF01210795.  Google Scholar

[6]

D. Carfì, M. L. Lapidus, E. P. J. Pearse and M. van Frankenhuijsen (eds.), Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics I, Fractals in Pure Mathematics, Contemporary Mathematics, vol. 600, Amer. Math. Soc., Providence, R. I., 2013. Google Scholar

[7]

A. DenizŞ. KoçakY. Özdemir and A. E. Üreyen, Tube volumes via functional equations, J. Geom., 106 (2015), 153-162.  doi: 10.1007/s00022-014-0241-3.  Google Scholar

[8]

K. J. Falconer, On the Minkowski measurability of fractals, Proc. Amer. Math. Soc., 123 (1995), 1115-1124.  doi: 10.1090/S0002-9939-1995-1224615-4.  Google Scholar

[9]

H. Federer, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), 418-491.  doi: 10.1090/S0002-9947-1959-0110078-1.  Google Scholar

[10]

J. Fleckinger and D. Vassiliev, An example of a two-term asymptotics for the "counting function" of a fractal drum, Trans. Amer. Math. Soc., 337 (1993), 99-116.  doi: 10.2307/2154311.  Google Scholar

[11]

M. Frantz, Lacunarity, Minkowski content, and self-similar sets in $\mathbb{R}$, in: Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot (M. L. Lapidus and M. van Frankenhuijsen, eds.), Proc. Sympos. Pure Math., 72, Part 1, Amer. Math. Soc., Providence, R. I., 2004, 77–91.  Google Scholar

[12]

D. Gatzouras, Lacunarity of self-similar and stochastically self-similar sets, Trans. Amer. Math. Soc., 352 (2000), 1953-1983.  doi: 10.1090/S0002-9947-99-02539-8.  Google Scholar

[13]

A. Gray, Tubes, 2nd edn., Progress in Math., vol. 221, Birkhäuser, Boston, 2004. doi: 10.1007/978-3-0348-7966-8.  Google Scholar

[14]

C. Q. He and M. L. Lapidus, Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function, Memoirs Amer. Math. Soc., 127 (1997), x+97 pp. doi: 10.1090/memo/0608.  Google Scholar

[15]

D. HugG. Last and W. Weil, A local Steiner-type formula for general closed sets and applications, Math. Z., 246 (2004), 237-272.  doi: 10.1007/s00209-003-0597-9.  Google Scholar

[16]

D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Accademia Nazionale dei Lincei, Cambridge Univ. Press, Cambridge, 1997.  Google Scholar

[17]

S. Kombrink, A survey on Minkowski measurability of self-similar sets and self-conformal fractals in $\mathbb{R}^d$, Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics, I. Fractals in pure mathematics, 135–159, Contemp. Math., 600, Amer. Math. Soc., Providence, RI, 2013. doi: 10.1090/conm/600/11931.  Google Scholar

[18]

J. Korevaar, Tauberian Theory: A Century of Developments, Springer-Verlag, Heidelberg, 2004. doi: 10.1007/978-3-662-10225-1.  Google Scholar

[19]

O. Kowalski, Additive volume invariants of Riemannian manifolds, Acta Math., 145 (1980), 205-225.  doi: 10.1007/BF02414190.  Google Scholar

[20]

M. L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Trans. Amer. Math. Soc., 325 (1991), 465-529.  doi: 10.1090/S0002-9947-1991-0994168-5.  Google Scholar

[21]

M. L. Lapidus, Spectral and fractal geometry: From the Weyl–Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function, in: Differential Equations and Mathematical Physics (C. Bennewitz, ed.), Proc. Fourth UAB Internat. Conf. (Birmingham, March 1990), Academic Press, New York, 186 (1992), 151–181. doi: 10.1016/S0076-5392(08)63379-2.  Google Scholar

[22]

M. L. Lapidus, Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the Weyl–Berry conjecture, in: Ordinary and Partial Differential Equations (B. D. Sleeman and R. J. Jarvis, eds.), vol. IV, Proc. Twelfth Internat. Conf. (Dundee, Scotland, UK, June 1992), Pitman Research Notes in Mathematics Series, vol. 289, Longman Scientific and Technical, London, 1993, 126–209.  Google Scholar

[23]

M. L. Lapidus, In Search of the Riemann Zeros: Strings, Fractal Membranes and Noncommutative Spacetimes, research monograph, Amer. Math. Soc., Providence, R. I., 2008. doi: 10.1090/mbk/051.  Google Scholar

[24]

M. L. Lapidus, The sound of fractal strings and the Riemann hypothesis, in: Analytic Number Theory: In Honor of Helmut Maier's 60th Birthday (C. B. Pomerance and T. Rassias, eds.), Springer Internat. Publ. Switzerland, Cham, 2015, 201–252.  Google Scholar

[25]

M. L. Lapidus and H. Maier, Hypothèse de Riemann, cordes fractales vibrantes et conjecture de Weyl-Berry modifiée, C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 19-24.   Google Scholar

[26]

M. L. Lapidus and H. Maier, The Riemann hypothesis and inverse spectral problems for fractal strings, J. London Math. Soc.(2), 52 (1995), 15-34.  doi: 10.1112/jlms/52.1.15.  Google Scholar

[27]

M. L. Lapidus and E. P. J. Pearse, Tube formulas and complex dimensions of self-similar tilings, Acta Applicandae Mathematicae, 112 (2010), 91-136.  doi: 10.1007/s10440-010-9562-x.  Google Scholar

[28]

M. L. LapidusE. P. J. Pearse and S. Winter, Pointwise tube formulas for fractal sprays and self-similar tilings with arbitrary generators, Adv. in Math., 227 (2011), 1349-1398.  doi: 10.1016/j.aim.2011.03.004.  Google Scholar

[29]

M. L. Lapidus, E. P. J. Pearse and S. Winter, Minkowski measurability results for self-similar tilings and fractals with monophase generators, Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics, I. Fractals in pure mathematics, 185–203, Contemp. Math., 600, Amer. Math. Soc., Providence, RI, 2013. doi: 10.1090/conm/600/11951.  Google Scholar

[30]

M. L. Lapidus and C. Pomerance, Fonction zêta de Riemann et conjecture de Weyl-Berry pour les tambours fractals, C. R. Acad. Sci. Paris Sér. I Math., 310 (1990), 343-348.   Google Scholar

[31]

M. L. Lapidus and C. Pomerance, The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums, Proc. London Math. Soc.(3), 66 (1993), 41-69.  doi: 10.1112/plms/s3-66.1.41.  Google Scholar

[32]

M. L. Lapidus and C. Pomerance, Counterexamples to the modified Weyl-Berry conjecture on fractal drums, Math. Proc. Cambridge Philos. Soc., 119 (1996), 167-178.  doi: 10.1017/S0305004100074053.  Google Scholar

[33]

M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions, Springer Monographs in Mathematics, Springer, New York, 2017. doi: 10.1007/978-3-319-44706-3.  Google Scholar

[34]

M. L. Lapidus, G. Radunović and D. Žubrinić, Distance and tube zeta functions of fractals and arbitrary compact sets, Adv. in Math., 307 (2017), 1215–1267. (Also: e-print, arXiv: 1506.03525v3, [math-ph], 2016; IHES preprint, IHES/M/15/15, 2015.) doi: 10.1016/j.aim.2016.11.034.  Google Scholar

[35]

M. L. Lapidus, G. Radunović and D. Žubrinić, Complex dimensions of fractals and meromorphic extensions of fractal zeta functions, J. Math. Anal. Appl., 453 (2017), 458–484. (Also: e-print, arXiv: 1508.04784v4, [math-ph], 2016.) doi: 10.1016/j.jmaa.2017.03.059.  Google Scholar

[36]

M. L. Lapidus, G. Radunović and D. Žubrinić, Zeta functions and complex dimensions of relative fractal drums: Theory, examples and applications, Dissertationes Math. (Rozprawy Mat.), 526 (2017), 1–105. (Also: e-print, arXiv: 1603.00946v3, [math-ph], 2016.) doi: 10.4064/dm757-4-2017.  Google Scholar

[37]

M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal tube formulas for compact sets and relative fractal drums: Oscillations, complex dimensions and fractality, J. Fractal Geom., 5 (2018), 1–119. (DOI: 10.4171/JFG/57)(Also: e-print, arXiv:1604.08014v5, [math-ph], 2018.) doi: 10.4171/JFG/57.  Google Scholar

[38]

M. L. Lapidus, G. Radunović and D. Žubrinić, Minkowski measurability criteria for compact sets and relative fractal drums in Euclidean spaces, submitted for publication in the Proceedings of the 6th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals (June 2017), World Scientific, Singapore and London, 2019. (Also: e-print, arXiv: 1609.04498v2, [math-ph], 2018.) Google Scholar

[39]

M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal zeta functions and complex dimensions of relative fractal drums, J. of Fixed Point Theory and Appl., 15 (2014), 321–378. Festschrift issue in honor of Haim Brezis' 70th birthday. doi: 10.1007/s11784-014-0207-y.  Google Scholar

[40]

M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal zeta functions and complex dimensions: A general higher-dimensional theory, in: Fractal Geometry and Stochastics V (C. Bandt, K. Falconer and M. Zähle, eds.), Proc. Fifth Internat. Conf. (Tabarz, Germany, March 2014), Progress in Probability, vol. 70, Birkhäuser/Springer Internat., Basel, Boston and Berlin, 2015, 229–257. doi: 10.1007/978-3-319-18660-3_13.  Google Scholar

[41]

M. L. Lapidus and M. van Frankenhuijsen, Fractality, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings, 2nd rev. and enl. edn. (of the 2006 edn.), Springer Monographs in Mathematics, Springer, New York, 2006. doi: 10.1007/978-0-387-35208-4.  Google Scholar

[42]

B. B. Mandelbrot, The Fractal Geometry of Nature, rev. and enl. edn. (of the 1977 edn.), W. H. Freeman, New York, 1983. Google Scholar

[43]

B. B. Mandelbrot, Measures of fractal lacunarity: Minkowski content and alternatives, in: Fractal Geometry and Stochastics (C. Bandt, S. Graf and M. Zähle, eds.), Progress in Probability, vol. 37, Birkhäuser-Verlag, Basel, 1995, 15–42.  Google Scholar

[44]

H. Minkowski, Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs, in: Gesammelte Abhandlungen von Hermann Minkowski (part Ⅱ, Ch. XXV), Chelsea, New York, 1967, 131–229. Google Scholar

[45]

L. Olsen, Multifractal tubes: Multifractal zeta functions, multifractal Steiner tube formulas and explicit formulas, Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics, I. Fractals in pure mathematics, 291–326, Contemp. Math., 600, Amer. Math. Soc., Providence, RI, 2013. doi: 10.1090/conm/600/11920.  Google Scholar

[46]

L. Olsen, Multifractal tubes, in: Further Developments in Fractals and Related Fields, Trends in Mathematics, Birkhäuser/Springer, New York, 2013, 161–191. doi: 10.1007/978-0-8176-8400-6_9.  Google Scholar

[47]

J. Rataj and S. Winter, Characterization of Minkowski measurability in terms of surface area, J. Math. Anal. Appl., 400 (2013), 120-132.  doi: 10.1016/j.jmaa.2012.10.059.  Google Scholar

[48]

R. Schneider, Convex Bodies: The Brunn–Minkowski Theory, Cambridge University Press, Cambridge, 1993. doi: 10.1017/CBO9780511526282.  Google Scholar

[49]

L. Schwartz, Théorie des Distributions, rev. and enl. edn. (of the 1951 edn.), Hermann, Paris, 1966.  Google Scholar

[50]

J. Steiner, Über parallele Flächen, Monatsb. preuss. Akad. Wiss., Berlin, 1840, 114–118. Google Scholar

[51]

E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Chelsea Publishing Co., New York, 1986.  Google Scholar

[52]

C. Tricot, Mesures et Dimensions, Thèse de Doctorat d'Etat Es Sciences Mathématiques, Université Paris-Sud, Orsay, France, 1983. Google Scholar

[53]

H. Weyl, On the volume of tubes, Amer. J. Math., 61 (1939), 461-472.  doi: 10.2307/2371513.  Google Scholar

[54]

S. Winter, Curvature measures and fractals, Dissertationes Math. (Rozprawy Mat.), 453 (2008), 1-66.  doi: 10.4064/dm453-0-1.  Google Scholar

[55]

S. Winter and M. Zähle, Fractal curvature measures of self-similar sets, Adv. Geom., 13 (2013), 229-244.  doi: 10.1515/advgeom-2012-0026.  Google Scholar

[56]

M. Zähle, Curvatures and currents for unions of sets with positive reach, Geom. Dedicata, 23 (1987), 155-171.  doi: 10.1007/BF00181273.  Google Scholar

[57]

M. Zähle, Curvature measures of fractal sets, Fractal Geometry and Dynamical Systems in pure and Applied Mathematics, I. Fractals in pure mathematics, 381–399, Contemp. Math., 600, Amer. Math. Soc., Providence, RI, 2013. doi: 10.1090/conm/600/11953.  Google Scholar

[58]

D. Žubrinić, Analysis of Minkowski contents of fractal sets and applications, Real Anal. Exchange, 31 (2005/2006), 315-354.  doi: 10.14321/realanalexch.31.2.0315.  Google Scholar

[1]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[2]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[3]

Manuel Fernández-Martínez. Theoretical properties of fractal dimensions for fractal structures. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1113-1128. doi: 10.3934/dcdss.2015.8.1113

[4]

Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281

[5]

Eugen Mihailescu. Equilibrium measures, prehistories distributions and fractal dimensions for endomorphisms. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2485-2502. doi: 10.3934/dcds.2012.32.2485

[6]

Joseph Squillace. Estimating the fractal dimension of sets determined by nonergodic parameters. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5843-5859. doi: 10.3934/dcds.2017254

[7]

Simon Scott. Relative zeta determinants and the geometry of the determinant line bundle. Electronic Research Announcements, 2001, 7: 8-16.

[8]

Uta Renata Freiberg. Einstein relation on fractal objects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 509-525. doi: 10.3934/dcdsb.2012.17.509

[9]

Umberto Mosco, Maria Agostina Vivaldi. Vanishing viscosity for fractal sets. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1207-1235. doi: 10.3934/dcds.2010.28.1207

[10]

V. V. Chepyzhov, A. A. Ilyin. On the fractal dimension of invariant sets: Applications to Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 117-135. doi: 10.3934/dcds.2004.10.117

[11]

Palle E. T. Jorgensen and Steen Pedersen. Orthogonal harmonic analysis of fractal measures. Electronic Research Announcements, 1998, 4: 35-42.

[12]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems & Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

[13]

Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437

[14]

Raffaela Capitanelli, Maria Agostina Vivaldi. Uniform weighted estimates on pre-fractal domains. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1969-1985. doi: 10.3934/dcdsb.2014.19.1969

[15]

Alexander Plakhov, Vera Roshchina. Fractal bodies invisible in 2 and 3 directions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1615-1631. doi: 10.3934/dcds.2013.33.1615

[16]

Thierry Coulbois. Fractal trees for irreducible automorphisms of free groups. Journal of Modern Dynamics, 2010, 4 (2) : 359-391. doi: 10.3934/jmd.2010.4.359

[17]

Robert S. Strichartz. A fractal quantum mechanical model with Coulomb potential. Communications on Pure & Applied Analysis, 2009, 8 (2) : 743-755. doi: 10.3934/cpaa.2009.8.743

[18]

Maria Rosaria Lancia, Paola Vernole. The Stokes problem in fractal domains: Asymptotic behaviour of the solutions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-13. doi: 10.3934/dcdss.2020088

[19]

Michael Barnsley, James Keesling, Mrinal Kanti Roychowdhury. Special issue on fractal geometry, dynamical systems, and their applications. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : ⅰ-ⅰ. doi: 10.3934/dcdss.201908i

[20]

Frédéric Naud, Anke Pohl, Louis Soares. Fractal Weyl bounds and Hecke triangle groups. Electronic Research Announcements, 2019, 26: 24-35. doi: 10.3934/era.2019.26.003

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (37)
  • HTML views (34)
  • Cited by (0)

[Back to Top]