February  2019, 12(1): 119-128. doi: 10.3934/dcdss.2019008

Asymptotic behaviour for operators of Grushin type: Invariant measure and singular perturbations

1. 

Dipartimento di Matematica "Tullio Levi-Civita", Università degli Studi di Padova, Via Trieste 63, 35121, Padova, Italy

2. 

Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Padova, Via Gradenigo 6/b, 35131, Padova, Italy

3. 

Université Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France

Received  February 2017 Revised  October 2017 Published  July 2018

This paper concerns singular perturbation problems where the dynamics of the fast variable evolve in the whole space according to an operator whose infinitesimal generator is formed by a Grushin type second order part and a Ornstein-Uhlenbeck first order part.

We prove that the dynamics of the fast variables admits an invariant measure and that the associated ergodic problem has a viscosity solution which is also regular and with logarithmic growth at infinity. These properties play a crucial role in the main theorem which establishes that the value functions of the starting perturbation problems converge to the solution of an effective problem whose operator and initial datum are given in terms of the associated invariant measure.

Citation: Paola Mannucci, Claudio Marchi, Nicoletta Tchou. Asymptotic behaviour for operators of Grushin type: Invariant measure and singular perturbations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 119-128. doi: 10.3934/dcdss.2019008
References:
[1]

O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations, Mem. Amer. Math. Soc., 204 (2010), vi+77 pp. doi: 10.1090/S0065-9266-09-00588-2.  Google Scholar

[2]

M. BardiA. Cesaroni and L. Manca, Convergence by viscosity methods in multiscale financial models with stochastic volatility, SIAM J. Financial Math., 1 (2010), 230-265.  doi: 10.1137/090748147.  Google Scholar

[3]

A. Bensoussan, Perturbation Methods in Optimal Control, Wiley/Gauthier-Villars Series in Modern Applied Mathematics. John Wiley & Sons, Chichester; Gauthier-Villars, Montrouge, 1988.  Google Scholar

[4]

I. Capuzzo Dolcetta and A. Cutrì On the Liouville property for the sub-Laplacians, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997), 239–256.  Google Scholar

[5]

M. G. CrandallH. Ishii and P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[6]

L. C. Evans, The perturbed test-function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359-375.  doi: 10.1017/S0308210500018631.  Google Scholar

[7]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, Berlin, 1993.  Google Scholar

[8]

Y. FujitaH. Ishii and P. Loreti, Asymptotic solutions of viscous Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator, Comm. Partial Differential Equations, 31 (2006), 827-848.  doi: 10.1080/03605300500358087.  Google Scholar

[9]

D. Ghilli, Viscosity methods for large deviations estimates of multi scale stochastic processes, ESAIM Control Optim. Calc. Var., to appear. doi: 10.1051/cocv/2017051.  Google Scholar

[10]

H. Ishii and P.-L. Lions, Viscosity solution of fully nonlinear second-order elliptic partial differential equations, J. Differential Equations, 83 (1990), 26-78.  doi: 10.1016/0022-0396(90)90068-Z.  Google Scholar

[11]

P. L. Lions and M. Musiela, Ergodicity of Diffusion Processes, unpublished. Google Scholar

[12]

P. Mannucci, C. Marchi and N. Tchou, The ergodic problem for some subelliptic operators with unbounded coefficients, NoDEA Nonlinear Differential Equations Appl., 23 (2016), Art. 47, 26 pp. doi: 10.1007/s00030-016-0401-2.  Google Scholar

[13]

P. Mannucci, C. Marchi and N. A. Tchou, Singular perturbations for a subelliptic operator, ESAIM Control Optim. Calc. Var., to appear. doi: 10.1051/cocv/2017063.  Google Scholar

show all references

References:
[1]

O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations, Mem. Amer. Math. Soc., 204 (2010), vi+77 pp. doi: 10.1090/S0065-9266-09-00588-2.  Google Scholar

[2]

M. BardiA. Cesaroni and L. Manca, Convergence by viscosity methods in multiscale financial models with stochastic volatility, SIAM J. Financial Math., 1 (2010), 230-265.  doi: 10.1137/090748147.  Google Scholar

[3]

A. Bensoussan, Perturbation Methods in Optimal Control, Wiley/Gauthier-Villars Series in Modern Applied Mathematics. John Wiley & Sons, Chichester; Gauthier-Villars, Montrouge, 1988.  Google Scholar

[4]

I. Capuzzo Dolcetta and A. Cutrì On the Liouville property for the sub-Laplacians, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997), 239–256.  Google Scholar

[5]

M. G. CrandallH. Ishii and P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[6]

L. C. Evans, The perturbed test-function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359-375.  doi: 10.1017/S0308210500018631.  Google Scholar

[7]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, Berlin, 1993.  Google Scholar

[8]

Y. FujitaH. Ishii and P. Loreti, Asymptotic solutions of viscous Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator, Comm. Partial Differential Equations, 31 (2006), 827-848.  doi: 10.1080/03605300500358087.  Google Scholar

[9]

D. Ghilli, Viscosity methods for large deviations estimates of multi scale stochastic processes, ESAIM Control Optim. Calc. Var., to appear. doi: 10.1051/cocv/2017051.  Google Scholar

[10]

H. Ishii and P.-L. Lions, Viscosity solution of fully nonlinear second-order elliptic partial differential equations, J. Differential Equations, 83 (1990), 26-78.  doi: 10.1016/0022-0396(90)90068-Z.  Google Scholar

[11]

P. L. Lions and M. Musiela, Ergodicity of Diffusion Processes, unpublished. Google Scholar

[12]

P. Mannucci, C. Marchi and N. Tchou, The ergodic problem for some subelliptic operators with unbounded coefficients, NoDEA Nonlinear Differential Equations Appl., 23 (2016), Art. 47, 26 pp. doi: 10.1007/s00030-016-0401-2.  Google Scholar

[13]

P. Mannucci, C. Marchi and N. A. Tchou, Singular perturbations for a subelliptic operator, ESAIM Control Optim. Calc. Var., to appear. doi: 10.1051/cocv/2017063.  Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[3]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[4]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[5]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[6]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[8]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[9]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[10]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[11]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[12]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[13]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[14]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[15]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[16]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[17]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[18]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[19]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[20]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (86)
  • HTML views (77)
  • Cited by (0)

Other articles
by authors

[Back to Top]