In this paper we discuss the existence and non-existence of weak solutions to parametric fractional equations involving the square root of the Laplacian $A_{1/2}$ in a smooth bounded domain $Ω\subset \mathbb{R}^{n}$ ($n≥2$) and with zero Dirichlet boundary conditions. Namely, our simple model is the following equation
$\left\{ \begin{align} &{{A}_{1/2}}u = \lambda f(u) \\ &u = 0 \\ \end{align} \right.\begin{array}{*{35}{l}} {}&\text{in}\ \Omega \\ {}&\text{on }\partial \Omega . \\\end{array}$
The existence of at least two non-trivial $L^{∞}$-bounded weak solutions is established for large value of the parameter $λ$, requiring that the nonlinear term $f$ is continuous, superlinear at zero and sublinear at infinity. Our approach is based on variational arguments and a suitable variant of the Caffarelli-Silvestre extension method.
Citation: |
V. Ambrosio
, Periodic solutions for a pseudo-relativistic Schrödinger equation, Nonlinear Anal. TMA, 120 (2015)
, 262-284.
doi: 10.1016/j.na.2015.03.017.![]() ![]() ![]() |
|
V. Ambrosio
and G. Molica Bisci
, Periodic solutions for nonlocal fractional equations, Comm. Pure Appl. Anal., 16 (2017)
, 331-344.
doi: 10.3934/cpaa.2017016.![]() ![]() ![]() |
|
V. Ambrosio and G. Molica Bisci, Periodic solutions for a fractional asymptotically linear problem,
Proc. Edinb. Math. Soc. Sect. A, in press.
![]() |
|
G. Autuori
and P. Pucci
, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^N$, J. Differential Equations, 255 (2013)
, 2340-2362.
doi: 10.1016/j.jde.2013.06.016.![]() ![]() ![]() |
|
B. Barrios
, E. Colorado
, A. De Pablo
and U. Sánchez
, On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012)
, 6133-6162.
doi: 10.1016/j.jde.2012.02.023.![]() ![]() ![]() |
|
R. Bartolo
and G. Molica Bisci
, A pseudo-index approach to fractional equations, Expo. Math., 33 (2015)
, 502-516.
doi: 10.1016/j.exmath.2014.12.001.![]() ![]() ![]() |
|
R. Bartolo
and G. Molica Bisci
, Asymptotically linear fractional $p$-Laplacian equations, Ann. Mat. Pura Appl., 196 (2017)
, 427-442.
doi: 10.1007/s10231-016-0579-2.![]() ![]() ![]() |
|
C. Brändle
, E. Colorado
, A. de Pablo
and U. Sánchez
, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013)
, 39-71.
doi: 10.1017/S0308210511000175.![]() ![]() ![]() |
|
H. Brézis,
Analyse Fonctionelle, Théorie et applications, Masson, Paris, 1983.
![]() ![]() |
|
X. Cabré
and Y. Sire
, Nonlinear Equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014)
, 23-53.
doi: 10.1016/j.anihpc.2013.02.001.![]() ![]() ![]() |
|
X. Cabré
and J. Tan
, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010)
, 2052-2093.
doi: 10.1016/j.aim.2010.01.025.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007)
, 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
|
L. Caffarelli
and A. Vasseur
, Drift diffusion equation with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010)
, 1903-1930.
doi: 10.4007/annals.2010.171.1903.![]() ![]() ![]() |
|
A. Capella
, Solutions of a pure critical exponent problem involving the half-Laplacian in annular-shaped domains, Commun. Pure Appl. Anal., 10 (2011)
, 1645-1662.
doi: 10.3934/cpaa.2011.10.1645.![]() ![]() ![]() |
|
E. Di Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012)
, 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
|
A. Kristály
, Multiple solutions of a sublinear Schrödinger equation, NoDEA Nonlinear Differential Equations Appl., 14 (2007)
, 291-301.
doi: 10.1007/s00030-007-5032-1.![]() ![]() ![]() |
|
A. Kristály
and V. Rǎdulescu
, Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden-Fowler equations, Studia Math., 191 (2009)
, 237-246.
doi: 10.4064/sm191-3-5.![]() ![]() ![]() |
|
A. Kristály
and D. Repovš
, Multiple solutions for a Neumann system involving subquadratic nonlinearities, Nonlinear Anal., 74 (2011)
, 2127-2132.
doi: 10.1016/j.na.2010.11.018.![]() ![]() ![]() |
|
A. Kristály
and D. Repovš
, On the Schrödinger-Maxwell system involving sublinear terms, Nonlinear Anal. Real World Appl., 13 (2012)
, 213-223.
doi: 10.1016/j.nonrwa.2011.07.027.![]() ![]() ![]() |
|
A. Kristály
and I. J. Rudas
, Elliptic problems on the ball endowed with Funk-type metrics, Nonlinear Anal., 119 (2015)
, 199-208.
doi: 10.1016/j.na.2014.09.015.![]() ![]() ![]() |
|
A. Kristály
and Cs. Varga
, Multiple solutions for a degenerate elliptic equation involving sublinear terms at infinity, J. Math. Anal. Appl., 352 (2009)
, 139-148.
doi: 10.1016/j.jmaa.2008.03.025.![]() ![]() ![]() |
|
T. Kuusi
, G. Mingione
and Y. Sire
, Nonlocal self-improving properties, Analysis & PDE, 8 (2015)
, 57-114.
doi: 10.2140/apde.2015.8.57.![]() ![]() ![]() |
|
T. Kuusi
, G. Mingione
and Y. Sire
, Nonlocal equations with measure data, Communications in Mathematical Physics, 337 (2015)
, 1317-1368.
doi: 10.1007/s00220-015-2356-2.![]() ![]() ![]() |
|
M. Marinelli
and D. Mugnai
, The generalized logistic equation with indefinite weight driven by the square root of the Laplacian, Nonlinearity, 27 (2014)
, 2361-2376.
doi: 10.1088/0951-7715/27/9/2361.![]() ![]() ![]() |
|
J. Mawhin
and G. Molica Bisci
, A Brezis-Nirenberg type result for a nonlocal fractional operator, J. Lond. Math. Soc., 95 (2017)
, 73-93.
doi: 10.1112/jlms.12009.![]() ![]() ![]() |
|
G. Molica Bisci
and V. Rǎdulescu
, Multiplicity results for elliptic fractional equations with subcritical term, NoDEA Nonlinear Differential Equations Appl., 22 (2015)
, 721-739.
doi: 10.1007/s00030-014-0302-1.![]() ![]() ![]() |
|
G. Molica Bisci
and V. Rǎdulescu
, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015)
, 2985-3008.
doi: 10.1007/s00526-015-0891-5.![]() ![]() ![]() |
|
G. Molica Bisci
and V. Rǎdulescu
, A sharp eigenvalue theorem for fractional elliptic equations, Israel Journal of Math., 219 (2017)
, 331-351.
doi: 10.1007/s11856-017-1482-2.![]() ![]() ![]() |
|
G. Molica Bisci, V. Rǎdulescu and R. Servadei,
Variational Methods for Nonlocal Fractional Problems. With a Foreword by Jean Mawhin, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 162 Cambridge, 2016.
doi: 10.1017/CBO9781316282397.![]() ![]() ![]() |
|
G. Molica Bisci
and D. Repovš
, Existence and localization of solutions for nonlocal fractional equations, Asymptot. Anal., 90 (2014)
, 367-378.
![]() ![]() |
|
G. Molica Bisci
and D. Repovš
, Higher nonlocal problems with bounded potential, J. Math. Anal. Appl., 420 (2014)
, 167-176.
doi: 10.1016/j.jmaa.2014.05.073.![]() ![]() ![]() |
|
G. Molica Bisci
and D. Repovš
, On doubly nonlocal fractional elliptic equations, Rend. Lincei Mat. Appl., 26 (2015)
, 161-176.
doi: 10.4171/RLM/700.![]() ![]() ![]() |
|
G. Molica Bisci
, D. Repovš
and R. Servadei
, Nontrivial solutions of superlinear nonlocal problems, Forum Math., 28 (2016)
, 1095-1110.
doi: 10.1515/forum-2015-0204.![]() ![]() ![]() |
|
G. Molica Bisci
, D. Repovš
and L. Vilasi
, Multipe solutions of nonlinear equations involving the square root of the Laplacian, Appl. Anal., 96 (2017)
, 1483-1496.
doi: 10.1080/00036811.2016.1221069.![]() ![]() ![]() |
|
D. Mugnai
and D. Pagliardini
, Existence and multiplicity results for the fractional Laplacian in bounded domains, Adv. Calc. Var., 10 (2017)
, 111-124.
doi: 10.1515/acv-2015-0032.![]() ![]() ![]() |
|
R. Musina
and A. Nazarov
, On fractional Laplacians, Commun. Partial Differential Equations, 39 (2014)
, 1780-1790.
doi: 10.1080/03605302.2013.864304.![]() ![]() ![]() |
|
P. Piersanti
and P. Pucci
, Existence theorems for fractional $p$-Laplacian problems, Anal. Appl., 15 (2017)
, 607-640.
doi: 10.1142/S0219530516500020.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012)
, 887-898.
doi: 10.1016/j.jmaa.2011.12.032.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014)
, 1-25.
doi: 10.1017/S0308210512001783.![]() ![]() ![]() |
|
J. Tan
, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations, 36 (2011)
, 21-41.
doi: 10.1007/s00526-010-0378-3.![]() ![]() ![]() |
|
J. Tan
, Positive solutions for non local elliptic problems, Discrete Contin. Dyn. Syst., 33 (2013)
, 837-859.
doi: 10.3934/dcds.2013.33.837.![]() ![]() ![]() |