April  2019, 12(2): 151-170. doi: 10.3934/dcdss.2019011

Nonlinear equations involving the square root of the Laplacian

1. 

Dipartimento di Scienze Pure e Applicate (DiSPeA), Università degli Studi di Urbino 'Carlo Bo' Piazza della Repubblica, 13, 61029 Urbino, Pesaro e Urbino, Italy

2. 

Dipartimento PAU, Università degli Studi 'Mediterranea' di Reggio Calabria, Salita Melissari - Feo di Vito, 89100 Reggio Calabria, Italy

3. 

Faculty of Education, and Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia

* Corresponding author: Giovanni Molica Bisci

Dedicated to Professor Vicenţiu Rǎdulescu with deep esteem and admiration

Received  May 2017 Revised  December 2017 Published  August 2018

In this paper we discuss the existence and non-existence of weak solutions to parametric fractional equations involving the square root of the Laplacian
$A_{1/2}$
in a smooth bounded domain
$Ω\subset \mathbb{R}^{n}$
(
$n≥2$
) and with zero Dirichlet boundary conditions. Namely, our simple model is the following equation
$\left\{ \begin{align} &{{A}_{1/2}}u = \lambda f(u) \\ &u = 0 \\ \end{align} \right.\begin{array}{*{35}{l}} {}&\text{in}\ \Omega \\ {}&\text{on }\partial \Omega . \\\end{array}$
The existence of at least two non-trivial
$L^{∞}$
-bounded weak solutions is established for large value of the parameter
$λ$
, requiring that the nonlinear term
$f$
is continuous, superlinear at zero and sublinear at infinity. Our approach is based on variational arguments and a suitable variant of the Caffarelli-Silvestre extension method.
Citation: Vincenzo Ambrosio, Giovanni Molica Bisci, Dušan Repovš. Nonlinear equations involving the square root of the Laplacian. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 151-170. doi: 10.3934/dcdss.2019011
References:
[1]

V. Ambrosio, Periodic solutions for a pseudo-relativistic Schrödinger equation, Nonlinear Anal. TMA, 120 (2015), 262-284.  doi: 10.1016/j.na.2015.03.017.  Google Scholar

[2]

V. Ambrosio and G. Molica Bisci, Periodic solutions for nonlocal fractional equations, Comm. Pure Appl. Anal., 16 (2017), 331-344.  doi: 10.3934/cpaa.2017016.  Google Scholar

[3]

V. Ambrosio and G. Molica Bisci, Periodic solutions for a fractional asymptotically linear problem, Proc. Edinb. Math. Soc. Sect. A, in press. Google Scholar

[4]

G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^N$, J. Differential Equations, 255 (2013), 2340-2362.  doi: 10.1016/j.jde.2013.06.016.  Google Scholar

[5]

B. BarriosE. ColoradoA. De Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012), 6133-6162.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[6]

R. Bartolo and G. Molica Bisci, A pseudo-index approach to fractional equations, Expo. Math., 33 (2015), 502-516.  doi: 10.1016/j.exmath.2014.12.001.  Google Scholar

[7]

R. Bartolo and G. Molica Bisci, Asymptotically linear fractional $p$-Laplacian equations, Ann. Mat. Pura Appl., 196 (2017), 427-442.  doi: 10.1007/s10231-016-0579-2.  Google Scholar

[8]

C. BrändleE. ColoradoA. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[9]

H. Brézis, Analyse Fonctionelle, Théorie et applications, Masson, Paris, 1983.  Google Scholar

[10]

X. Cabré and Y. Sire, Nonlinear Equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[11]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[12]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[13]

L. Caffarelli and A. Vasseur, Drift diffusion equation with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[14]

A. Capella, Solutions of a pure critical exponent problem involving the half-Laplacian in annular-shaped domains, Commun. Pure Appl. Anal., 10 (2011), 1645-1662.  doi: 10.3934/cpaa.2011.10.1645.  Google Scholar

[15]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

A. Kristály, Multiple solutions of a sublinear Schrödinger equation, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 291-301.  doi: 10.1007/s00030-007-5032-1.  Google Scholar

[17]

A. Kristály and V. Rǎdulescu, Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden-Fowler equations, Studia Math., 191 (2009), 237-246.  doi: 10.4064/sm191-3-5.  Google Scholar

[18]

A. Kristály and D. Repovš, Multiple solutions for a Neumann system involving subquadratic nonlinearities, Nonlinear Anal., 74 (2011), 2127-2132.  doi: 10.1016/j.na.2010.11.018.  Google Scholar

[19]

A. Kristály and D. Repovš, On the Schrödinger-Maxwell system involving sublinear terms, Nonlinear Anal. Real World Appl., 13 (2012), 213-223.  doi: 10.1016/j.nonrwa.2011.07.027.  Google Scholar

[20]

A. Kristály and I. J. Rudas, Elliptic problems on the ball endowed with Funk-type metrics, Nonlinear Anal., 119 (2015), 199-208.  doi: 10.1016/j.na.2014.09.015.  Google Scholar

[21]

A. Kristály and Cs. Varga, Multiple solutions for a degenerate elliptic equation involving sublinear terms at infinity, J. Math. Anal. Appl., 352 (2009), 139-148.  doi: 10.1016/j.jmaa.2008.03.025.  Google Scholar

[22]

T. KuusiG. Mingione and Y. Sire, Nonlocal self-improving properties, Analysis & PDE, 8 (2015), 57-114.  doi: 10.2140/apde.2015.8.57.  Google Scholar

[23]

T. KuusiG. Mingione and Y. Sire, Nonlocal equations with measure data, Communications in Mathematical Physics, 337 (2015), 1317-1368.  doi: 10.1007/s00220-015-2356-2.  Google Scholar

[24]

M. Marinelli and D. Mugnai, The generalized logistic equation with indefinite weight driven by the square root of the Laplacian, Nonlinearity, 27 (2014), 2361-2376.  doi: 10.1088/0951-7715/27/9/2361.  Google Scholar

[25]

J. Mawhin and G. Molica Bisci, A Brezis-Nirenberg type result for a nonlocal fractional operator, J. Lond. Math. Soc., 95 (2017), 73-93.  doi: 10.1112/jlms.12009.  Google Scholar

[26]

G. Molica Bisci and V. Rǎdulescu, Multiplicity results for elliptic fractional equations with subcritical term, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 721-739.  doi: 10.1007/s00030-014-0302-1.  Google Scholar

[27]

G. Molica Bisci and V. Rǎdulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 2985-3008.  doi: 10.1007/s00526-015-0891-5.  Google Scholar

[28]

G. Molica Bisci and V. Rǎdulescu, A sharp eigenvalue theorem for fractional elliptic equations, Israel Journal of Math., 219 (2017), 331-351.  doi: 10.1007/s11856-017-1482-2.  Google Scholar

[29]

G. Molica Bisci, V. Rǎdulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems. With a Foreword by Jean Mawhin, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 162 Cambridge, 2016. doi: 10.1017/CBO9781316282397.  Google Scholar

[30]

G. Molica Bisci and D. Repovš, Existence and localization of solutions for nonlocal fractional equations, Asymptot. Anal., 90 (2014), 367-378.   Google Scholar

[31]

G. Molica Bisci and D. Repovš, Higher nonlocal problems with bounded potential, J. Math. Anal. Appl., 420 (2014), 167-176.  doi: 10.1016/j.jmaa.2014.05.073.  Google Scholar

[32]

G. Molica Bisci and D. Repovš, On doubly nonlocal fractional elliptic equations, Rend. Lincei Mat. Appl., 26 (2015), 161-176.  doi: 10.4171/RLM/700.  Google Scholar

[33]

G. Molica BisciD. Repovš and R. Servadei, Nontrivial solutions of superlinear nonlocal problems, Forum Math., 28 (2016), 1095-1110.  doi: 10.1515/forum-2015-0204.  Google Scholar

[34]

G. Molica BisciD. Repovš and L. Vilasi, Multipe solutions of nonlinear equations involving the square root of the Laplacian, Appl. Anal., 96 (2017), 1483-1496.  doi: 10.1080/00036811.2016.1221069.  Google Scholar

[35]

D. Mugnai and D. Pagliardini, Existence and multiplicity results for the fractional Laplacian in bounded domains, Adv. Calc. Var., 10 (2017), 111-124.  doi: 10.1515/acv-2015-0032.  Google Scholar

[36]

R. Musina and A. Nazarov, On fractional Laplacians, Commun. Partial Differential Equations, 39 (2014), 1780-1790.  doi: 10.1080/03605302.2013.864304.  Google Scholar

[37]

P. Piersanti and P. Pucci, Existence theorems for fractional $p$-Laplacian problems, Anal. Appl., 15 (2017), 607-640.  doi: 10.1142/S0219530516500020.  Google Scholar

[38]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[39]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1-25.  doi: 10.1017/S0308210512001783.  Google Scholar

[40]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations, 36 (2011), 21-41.  doi: 10.1007/s00526-010-0378-3.  Google Scholar

[41]

J. Tan, Positive solutions for non local elliptic problems, Discrete Contin. Dyn. Syst., 33 (2013), 837-859.  doi: 10.3934/dcds.2013.33.837.  Google Scholar

show all references

References:
[1]

V. Ambrosio, Periodic solutions for a pseudo-relativistic Schrödinger equation, Nonlinear Anal. TMA, 120 (2015), 262-284.  doi: 10.1016/j.na.2015.03.017.  Google Scholar

[2]

V. Ambrosio and G. Molica Bisci, Periodic solutions for nonlocal fractional equations, Comm. Pure Appl. Anal., 16 (2017), 331-344.  doi: 10.3934/cpaa.2017016.  Google Scholar

[3]

V. Ambrosio and G. Molica Bisci, Periodic solutions for a fractional asymptotically linear problem, Proc. Edinb. Math. Soc. Sect. A, in press. Google Scholar

[4]

G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^N$, J. Differential Equations, 255 (2013), 2340-2362.  doi: 10.1016/j.jde.2013.06.016.  Google Scholar

[5]

B. BarriosE. ColoradoA. De Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012), 6133-6162.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[6]

R. Bartolo and G. Molica Bisci, A pseudo-index approach to fractional equations, Expo. Math., 33 (2015), 502-516.  doi: 10.1016/j.exmath.2014.12.001.  Google Scholar

[7]

R. Bartolo and G. Molica Bisci, Asymptotically linear fractional $p$-Laplacian equations, Ann. Mat. Pura Appl., 196 (2017), 427-442.  doi: 10.1007/s10231-016-0579-2.  Google Scholar

[8]

C. BrändleE. ColoradoA. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[9]

H. Brézis, Analyse Fonctionelle, Théorie et applications, Masson, Paris, 1983.  Google Scholar

[10]

X. Cabré and Y. Sire, Nonlinear Equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[11]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[12]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[13]

L. Caffarelli and A. Vasseur, Drift diffusion equation with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[14]

A. Capella, Solutions of a pure critical exponent problem involving the half-Laplacian in annular-shaped domains, Commun. Pure Appl. Anal., 10 (2011), 1645-1662.  doi: 10.3934/cpaa.2011.10.1645.  Google Scholar

[15]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

A. Kristály, Multiple solutions of a sublinear Schrödinger equation, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 291-301.  doi: 10.1007/s00030-007-5032-1.  Google Scholar

[17]

A. Kristály and V. Rǎdulescu, Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden-Fowler equations, Studia Math., 191 (2009), 237-246.  doi: 10.4064/sm191-3-5.  Google Scholar

[18]

A. Kristály and D. Repovš, Multiple solutions for a Neumann system involving subquadratic nonlinearities, Nonlinear Anal., 74 (2011), 2127-2132.  doi: 10.1016/j.na.2010.11.018.  Google Scholar

[19]

A. Kristály and D. Repovš, On the Schrödinger-Maxwell system involving sublinear terms, Nonlinear Anal. Real World Appl., 13 (2012), 213-223.  doi: 10.1016/j.nonrwa.2011.07.027.  Google Scholar

[20]

A. Kristály and I. J. Rudas, Elliptic problems on the ball endowed with Funk-type metrics, Nonlinear Anal., 119 (2015), 199-208.  doi: 10.1016/j.na.2014.09.015.  Google Scholar

[21]

A. Kristály and Cs. Varga, Multiple solutions for a degenerate elliptic equation involving sublinear terms at infinity, J. Math. Anal. Appl., 352 (2009), 139-148.  doi: 10.1016/j.jmaa.2008.03.025.  Google Scholar

[22]

T. KuusiG. Mingione and Y. Sire, Nonlocal self-improving properties, Analysis & PDE, 8 (2015), 57-114.  doi: 10.2140/apde.2015.8.57.  Google Scholar

[23]

T. KuusiG. Mingione and Y. Sire, Nonlocal equations with measure data, Communications in Mathematical Physics, 337 (2015), 1317-1368.  doi: 10.1007/s00220-015-2356-2.  Google Scholar

[24]

M. Marinelli and D. Mugnai, The generalized logistic equation with indefinite weight driven by the square root of the Laplacian, Nonlinearity, 27 (2014), 2361-2376.  doi: 10.1088/0951-7715/27/9/2361.  Google Scholar

[25]

J. Mawhin and G. Molica Bisci, A Brezis-Nirenberg type result for a nonlocal fractional operator, J. Lond. Math. Soc., 95 (2017), 73-93.  doi: 10.1112/jlms.12009.  Google Scholar

[26]

G. Molica Bisci and V. Rǎdulescu, Multiplicity results for elliptic fractional equations with subcritical term, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 721-739.  doi: 10.1007/s00030-014-0302-1.  Google Scholar

[27]

G. Molica Bisci and V. Rǎdulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 2985-3008.  doi: 10.1007/s00526-015-0891-5.  Google Scholar

[28]

G. Molica Bisci and V. Rǎdulescu, A sharp eigenvalue theorem for fractional elliptic equations, Israel Journal of Math., 219 (2017), 331-351.  doi: 10.1007/s11856-017-1482-2.  Google Scholar

[29]

G. Molica Bisci, V. Rǎdulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems. With a Foreword by Jean Mawhin, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 162 Cambridge, 2016. doi: 10.1017/CBO9781316282397.  Google Scholar

[30]

G. Molica Bisci and D. Repovš, Existence and localization of solutions for nonlocal fractional equations, Asymptot. Anal., 90 (2014), 367-378.   Google Scholar

[31]

G. Molica Bisci and D. Repovš, Higher nonlocal problems with bounded potential, J. Math. Anal. Appl., 420 (2014), 167-176.  doi: 10.1016/j.jmaa.2014.05.073.  Google Scholar

[32]

G. Molica Bisci and D. Repovš, On doubly nonlocal fractional elliptic equations, Rend. Lincei Mat. Appl., 26 (2015), 161-176.  doi: 10.4171/RLM/700.  Google Scholar

[33]

G. Molica BisciD. Repovš and R. Servadei, Nontrivial solutions of superlinear nonlocal problems, Forum Math., 28 (2016), 1095-1110.  doi: 10.1515/forum-2015-0204.  Google Scholar

[34]

G. Molica BisciD. Repovš and L. Vilasi, Multipe solutions of nonlinear equations involving the square root of the Laplacian, Appl. Anal., 96 (2017), 1483-1496.  doi: 10.1080/00036811.2016.1221069.  Google Scholar

[35]

D. Mugnai and D. Pagliardini, Existence and multiplicity results for the fractional Laplacian in bounded domains, Adv. Calc. Var., 10 (2017), 111-124.  doi: 10.1515/acv-2015-0032.  Google Scholar

[36]

R. Musina and A. Nazarov, On fractional Laplacians, Commun. Partial Differential Equations, 39 (2014), 1780-1790.  doi: 10.1080/03605302.2013.864304.  Google Scholar

[37]

P. Piersanti and P. Pucci, Existence theorems for fractional $p$-Laplacian problems, Anal. Appl., 15 (2017), 607-640.  doi: 10.1142/S0219530516500020.  Google Scholar

[38]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[39]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1-25.  doi: 10.1017/S0308210512001783.  Google Scholar

[40]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations, 36 (2011), 21-41.  doi: 10.1007/s00526-010-0378-3.  Google Scholar

[41]

J. Tan, Positive solutions for non local elliptic problems, Discrete Contin. Dyn. Syst., 33 (2013), 837-859.  doi: 10.3934/dcds.2013.33.837.  Google Scholar

[1]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[2]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[3]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[4]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[5]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[6]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[7]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[8]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[9]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[10]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[11]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[12]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[13]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[14]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[15]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[16]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[17]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[18]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[19]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[20]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (154)
  • HTML views (128)
  • Cited by (1)

[Back to Top]