# American Institute of Mathematical Sciences

April  2019, 12(2): 151-170. doi: 10.3934/dcdss.2019011

## Nonlinear equations involving the square root of the Laplacian

 1 Dipartimento di Scienze Pure e Applicate (DiSPeA), Università degli Studi di Urbino 'Carlo Bo' Piazza della Repubblica, 13, 61029 Urbino, Pesaro e Urbino, Italy 2 Dipartimento PAU, Università degli Studi 'Mediterranea' di Reggio Calabria, Salita Melissari - Feo di Vito, 89100 Reggio Calabria, Italy 3 Faculty of Education, and Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia

* Corresponding author: Giovanni Molica Bisci

Dedicated to Professor Vicenţiu Rǎdulescu with deep esteem and admiration

Received  May 2017 Revised  December 2017 Published  August 2018

In this paper we discuss the existence and non-existence of weak solutions to parametric fractional equations involving the square root of the Laplacian
 $A_{1/2}$
in a smooth bounded domain
 $Ω\subset \mathbb{R}^{n}$
(
 $n≥2$
) and with zero Dirichlet boundary conditions. Namely, our simple model is the following equation
 \left\{ \begin{align} &{{A}_{1/2}}u = \lambda f(u) \\ &u = 0 \\ \end{align} \right.\begin{array}{*{35}{l}} {}&\text{in}\ \Omega \\ {}&\text{on }\partial \Omega . \\\end{array}
The existence of at least two non-trivial
 $L^{∞}$
-bounded weak solutions is established for large value of the parameter
 $λ$
, requiring that the nonlinear term
 $f$
is continuous, superlinear at zero and sublinear at infinity. Our approach is based on variational arguments and a suitable variant of the Caffarelli-Silvestre extension method.
Citation: Vincenzo Ambrosio, Giovanni Molica Bisci, Dušan Repovš. Nonlinear equations involving the square root of the Laplacian. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 151-170. doi: 10.3934/dcdss.2019011
##### References:
 [1] V. Ambrosio, Periodic solutions for a pseudo-relativistic Schrödinger equation, Nonlinear Anal. TMA, 120 (2015), 262-284.  doi: 10.1016/j.na.2015.03.017. [2] V. Ambrosio and G. Molica Bisci, Periodic solutions for nonlocal fractional equations, Comm. Pure Appl. Anal., 16 (2017), 331-344.  doi: 10.3934/cpaa.2017016. [3] V. Ambrosio and G. Molica Bisci, Periodic solutions for a fractional asymptotically linear problem, Proc. Edinb. Math. Soc. Sect. A, in press. [4] G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^N$, J. Differential Equations, 255 (2013), 2340-2362.  doi: 10.1016/j.jde.2013.06.016. [5] B. Barrios, E. Colorado, A. De Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012), 6133-6162.  doi: 10.1016/j.jde.2012.02.023. [6] R. Bartolo and G. Molica Bisci, A pseudo-index approach to fractional equations, Expo. Math., 33 (2015), 502-516.  doi: 10.1016/j.exmath.2014.12.001. [7] R. Bartolo and G. Molica Bisci, Asymptotically linear fractional $p$-Laplacian equations, Ann. Mat. Pura Appl., 196 (2017), 427-442.  doi: 10.1007/s10231-016-0579-2. [8] C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71.  doi: 10.1017/S0308210511000175. [9] H. Brézis, Analyse Fonctionelle, Théorie et applications, Masson, Paris, 1983. [10] X. Cabré and Y. Sire, Nonlinear Equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001. [11] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025. [12] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306. [13] L. Caffarelli and A. Vasseur, Drift diffusion equation with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903. [14] A. Capella, Solutions of a pure critical exponent problem involving the half-Laplacian in annular-shaped domains, Commun. Pure Appl. Anal., 10 (2011), 1645-1662.  doi: 10.3934/cpaa.2011.10.1645. [15] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004. [16] A. Kristály, Multiple solutions of a sublinear Schrödinger equation, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 291-301.  doi: 10.1007/s00030-007-5032-1. [17] A. Kristály and V. Rǎdulescu, Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden-Fowler equations, Studia Math., 191 (2009), 237-246.  doi: 10.4064/sm191-3-5. [18] A. Kristály and D. Repovš, Multiple solutions for a Neumann system involving subquadratic nonlinearities, Nonlinear Anal., 74 (2011), 2127-2132.  doi: 10.1016/j.na.2010.11.018. [19] A. Kristály and D. Repovš, On the Schrödinger-Maxwell system involving sublinear terms, Nonlinear Anal. Real World Appl., 13 (2012), 213-223.  doi: 10.1016/j.nonrwa.2011.07.027. [20] A. Kristály and I. J. Rudas, Elliptic problems on the ball endowed with Funk-type metrics, Nonlinear Anal., 119 (2015), 199-208.  doi: 10.1016/j.na.2014.09.015. [21] A. Kristály and Cs. Varga, Multiple solutions for a degenerate elliptic equation involving sublinear terms at infinity, J. Math. Anal. Appl., 352 (2009), 139-148.  doi: 10.1016/j.jmaa.2008.03.025. [22] T. Kuusi, G. Mingione and Y. Sire, Nonlocal self-improving properties, Analysis & PDE, 8 (2015), 57-114.  doi: 10.2140/apde.2015.8.57. [23] T. Kuusi, G. Mingione and Y. Sire, Nonlocal equations with measure data, Communications in Mathematical Physics, 337 (2015), 1317-1368.  doi: 10.1007/s00220-015-2356-2. [24] M. Marinelli and D. Mugnai, The generalized logistic equation with indefinite weight driven by the square root of the Laplacian, Nonlinearity, 27 (2014), 2361-2376.  doi: 10.1088/0951-7715/27/9/2361. [25] J. Mawhin and G. Molica Bisci, A Brezis-Nirenberg type result for a nonlocal fractional operator, J. Lond. Math. Soc., 95 (2017), 73-93.  doi: 10.1112/jlms.12009. [26] G. Molica Bisci and V. Rǎdulescu, Multiplicity results for elliptic fractional equations with subcritical term, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 721-739.  doi: 10.1007/s00030-014-0302-1. [27] G. Molica Bisci and V. Rǎdulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 2985-3008.  doi: 10.1007/s00526-015-0891-5. [28] G. Molica Bisci and V. Rǎdulescu, A sharp eigenvalue theorem for fractional elliptic equations, Israel Journal of Math., 219 (2017), 331-351.  doi: 10.1007/s11856-017-1482-2. [29] G. Molica Bisci, V. Rǎdulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems. With a Foreword by Jean Mawhin, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 162 Cambridge, 2016. doi: 10.1017/CBO9781316282397. [30] G. Molica Bisci and D. Repovš, Existence and localization of solutions for nonlocal fractional equations, Asymptot. Anal., 90 (2014), 367-378. [31] G. Molica Bisci and D. Repovš, Higher nonlocal problems with bounded potential, J. Math. Anal. Appl., 420 (2014), 167-176.  doi: 10.1016/j.jmaa.2014.05.073. [32] G. Molica Bisci and D. Repovš, On doubly nonlocal fractional elliptic equations, Rend. Lincei Mat. Appl., 26 (2015), 161-176.  doi: 10.4171/RLM/700. [33] G. Molica Bisci, D. Repovš and R. Servadei, Nontrivial solutions of superlinear nonlocal problems, Forum Math., 28 (2016), 1095-1110.  doi: 10.1515/forum-2015-0204. [34] G. Molica Bisci, D. Repovš and L. Vilasi, Multipe solutions of nonlinear equations involving the square root of the Laplacian, Appl. Anal., 96 (2017), 1483-1496.  doi: 10.1080/00036811.2016.1221069. [35] D. Mugnai and D. Pagliardini, Existence and multiplicity results for the fractional Laplacian in bounded domains, Adv. Calc. Var., 10 (2017), 111-124.  doi: 10.1515/acv-2015-0032. [36] R. Musina and A. Nazarov, On fractional Laplacians, Commun. Partial Differential Equations, 39 (2014), 1780-1790.  doi: 10.1080/03605302.2013.864304. [37] P. Piersanti and P. Pucci, Existence theorems for fractional $p$-Laplacian problems, Anal. Appl., 15 (2017), 607-640.  doi: 10.1142/S0219530516500020. [38] R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032. [39] R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1-25.  doi: 10.1017/S0308210512001783. [40] J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations, 36 (2011), 21-41.  doi: 10.1007/s00526-010-0378-3. [41] J. Tan, Positive solutions for non local elliptic problems, Discrete Contin. Dyn. Syst., 33 (2013), 837-859.  doi: 10.3934/dcds.2013.33.837.

show all references

Dedicated to Professor Vicenţiu Rǎdulescu with deep esteem and admiration

##### References:
 [1] V. Ambrosio, Periodic solutions for a pseudo-relativistic Schrödinger equation, Nonlinear Anal. TMA, 120 (2015), 262-284.  doi: 10.1016/j.na.2015.03.017. [2] V. Ambrosio and G. Molica Bisci, Periodic solutions for nonlocal fractional equations, Comm. Pure Appl. Anal., 16 (2017), 331-344.  doi: 10.3934/cpaa.2017016. [3] V. Ambrosio and G. Molica Bisci, Periodic solutions for a fractional asymptotically linear problem, Proc. Edinb. Math. Soc. Sect. A, in press. [4] G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^N$, J. Differential Equations, 255 (2013), 2340-2362.  doi: 10.1016/j.jde.2013.06.016. [5] B. Barrios, E. Colorado, A. De Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012), 6133-6162.  doi: 10.1016/j.jde.2012.02.023. [6] R. Bartolo and G. Molica Bisci, A pseudo-index approach to fractional equations, Expo. Math., 33 (2015), 502-516.  doi: 10.1016/j.exmath.2014.12.001. [7] R. Bartolo and G. Molica Bisci, Asymptotically linear fractional $p$-Laplacian equations, Ann. Mat. Pura Appl., 196 (2017), 427-442.  doi: 10.1007/s10231-016-0579-2. [8] C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71.  doi: 10.1017/S0308210511000175. [9] H. Brézis, Analyse Fonctionelle, Théorie et applications, Masson, Paris, 1983. [10] X. Cabré and Y. Sire, Nonlinear Equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001. [11] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025. [12] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306. [13] L. Caffarelli and A. Vasseur, Drift diffusion equation with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903. [14] A. Capella, Solutions of a pure critical exponent problem involving the half-Laplacian in annular-shaped domains, Commun. Pure Appl. Anal., 10 (2011), 1645-1662.  doi: 10.3934/cpaa.2011.10.1645. [15] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004. [16] A. Kristály, Multiple solutions of a sublinear Schrödinger equation, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 291-301.  doi: 10.1007/s00030-007-5032-1. [17] A. Kristály and V. Rǎdulescu, Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden-Fowler equations, Studia Math., 191 (2009), 237-246.  doi: 10.4064/sm191-3-5. [18] A. Kristály and D. Repovš, Multiple solutions for a Neumann system involving subquadratic nonlinearities, Nonlinear Anal., 74 (2011), 2127-2132.  doi: 10.1016/j.na.2010.11.018. [19] A. Kristály and D. Repovš, On the Schrödinger-Maxwell system involving sublinear terms, Nonlinear Anal. Real World Appl., 13 (2012), 213-223.  doi: 10.1016/j.nonrwa.2011.07.027. [20] A. Kristály and I. J. Rudas, Elliptic problems on the ball endowed with Funk-type metrics, Nonlinear Anal., 119 (2015), 199-208.  doi: 10.1016/j.na.2014.09.015. [21] A. Kristály and Cs. Varga, Multiple solutions for a degenerate elliptic equation involving sublinear terms at infinity, J. Math. Anal. Appl., 352 (2009), 139-148.  doi: 10.1016/j.jmaa.2008.03.025. [22] T. Kuusi, G. Mingione and Y. Sire, Nonlocal self-improving properties, Analysis & PDE, 8 (2015), 57-114.  doi: 10.2140/apde.2015.8.57. [23] T. Kuusi, G. Mingione and Y. Sire, Nonlocal equations with measure data, Communications in Mathematical Physics, 337 (2015), 1317-1368.  doi: 10.1007/s00220-015-2356-2. [24] M. Marinelli and D. Mugnai, The generalized logistic equation with indefinite weight driven by the square root of the Laplacian, Nonlinearity, 27 (2014), 2361-2376.  doi: 10.1088/0951-7715/27/9/2361. [25] J. Mawhin and G. Molica Bisci, A Brezis-Nirenberg type result for a nonlocal fractional operator, J. Lond. Math. Soc., 95 (2017), 73-93.  doi: 10.1112/jlms.12009. [26] G. Molica Bisci and V. Rǎdulescu, Multiplicity results for elliptic fractional equations with subcritical term, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 721-739.  doi: 10.1007/s00030-014-0302-1. [27] G. Molica Bisci and V. Rǎdulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 2985-3008.  doi: 10.1007/s00526-015-0891-5. [28] G. Molica Bisci and V. Rǎdulescu, A sharp eigenvalue theorem for fractional elliptic equations, Israel Journal of Math., 219 (2017), 331-351.  doi: 10.1007/s11856-017-1482-2. [29] G. Molica Bisci, V. Rǎdulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems. With a Foreword by Jean Mawhin, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 162 Cambridge, 2016. doi: 10.1017/CBO9781316282397. [30] G. Molica Bisci and D. Repovš, Existence and localization of solutions for nonlocal fractional equations, Asymptot. Anal., 90 (2014), 367-378. [31] G. Molica Bisci and D. Repovš, Higher nonlocal problems with bounded potential, J. Math. Anal. Appl., 420 (2014), 167-176.  doi: 10.1016/j.jmaa.2014.05.073. [32] G. Molica Bisci and D. Repovš, On doubly nonlocal fractional elliptic equations, Rend. Lincei Mat. Appl., 26 (2015), 161-176.  doi: 10.4171/RLM/700. [33] G. Molica Bisci, D. Repovš and R. Servadei, Nontrivial solutions of superlinear nonlocal problems, Forum Math., 28 (2016), 1095-1110.  doi: 10.1515/forum-2015-0204. [34] G. Molica Bisci, D. Repovš and L. Vilasi, Multipe solutions of nonlinear equations involving the square root of the Laplacian, Appl. Anal., 96 (2017), 1483-1496.  doi: 10.1080/00036811.2016.1221069. [35] D. Mugnai and D. Pagliardini, Existence and multiplicity results for the fractional Laplacian in bounded domains, Adv. Calc. Var., 10 (2017), 111-124.  doi: 10.1515/acv-2015-0032. [36] R. Musina and A. Nazarov, On fractional Laplacians, Commun. Partial Differential Equations, 39 (2014), 1780-1790.  doi: 10.1080/03605302.2013.864304. [37] P. Piersanti and P. Pucci, Existence theorems for fractional $p$-Laplacian problems, Anal. Appl., 15 (2017), 607-640.  doi: 10.1142/S0219530516500020. [38] R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032. [39] R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1-25.  doi: 10.1017/S0308210512001783. [40] J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations, 36 (2011), 21-41.  doi: 10.1007/s00526-010-0378-3. [41] J. Tan, Positive solutions for non local elliptic problems, Discrete Contin. Dyn. Syst., 33 (2013), 837-859.  doi: 10.3934/dcds.2013.33.837.
 [1] Tadeusz Kulczycki, Robert Stańczy. Multiple solutions for Dirichlet nonlinear BVPs involving fractional Laplacian. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2581-2591. doi: 10.3934/dcdsb.2014.19.2581 [2] Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813 [3] Yixuan Wu, Yanzhi Zhang. Highly accurate operator factorization methods for the integral fractional Laplacian and its generalization. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 851-876. doi: 10.3934/dcdss.2022016 [4] De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431 [5] Lizhi Zhang. Symmetry of solutions to semilinear equations involving the fractional laplacian. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2393-2409. doi: 10.3934/cpaa.2015.14.2393 [6] Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154 [7] Marek Galewski, Renata Wieteska. Multiple periodic solutions to a discrete $p^{(k)}$ - Laplacian problem. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2535-2547. doi: 10.3934/dcdsb.2014.19.2535 [8] Rong Xiao, Yuying Zhou. Multiple solutions for a class of semilinear elliptic variational inclusion problems. Journal of Industrial and Management Optimization, 2011, 7 (4) : 991-1002. doi: 10.3934/jimo.2011.7.991 [9] Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121 [10] Rongrong Yang, Zhongxue Lü. The properties of positive solutions to semilinear equations involving the fractional Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1073-1089. doi: 10.3934/cpaa.2019052 [11] Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125 [12] Dengfeng Lü, Shuangjie Peng. On the positive vector solutions for nonlinear fractional Laplacian systems with linear coupling. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3327-3352. doi: 10.3934/dcds.2017141 [13] Yan Hu. Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian. Communications on Pure and Applied Analysis, 2016, 15 (3) : 947-964. doi: 10.3934/cpaa.2016.15.947 [14] Lishan Lin. A priori bounds and existence result of positive solutions for fractional Laplacian systems. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1517-1531. doi: 10.3934/dcds.2019065 [15] Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069 [16] Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071 [17] Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure and Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567 [18] Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104 [19] Hua Jin, Wenbin Liu, Jianjun Zhang. Multiple solutions of fractional Kirchhoff equations involving a critical nonlinearity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 533-545. doi: 10.3934/dcdss.2018029 [20] Vincenzo Ambrosio. Multiple concentrating solutions for a fractional Kirchhoff equation with magnetic fields. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 781-815. doi: 10.3934/dcds.2020062

2020 Impact Factor: 2.425