-
Previous Article
Fourth-order problems with Leray-Lions type operators in variable exponent spaces
- DCDS-S Home
- This Issue
-
Next Article
Navier-Stokes equations: Some questions related to the direction of the vorticity
Classical solutions for the system $\bf {\text{curl}\, v = g}$, with vanishing Dirichlet boundary conditions
Dipartimento di Matematica, Università di Pisa, Via F. Buonarroti 1/c, Pisa, I-56127, Italy |
We consider the boundary value problem associated to the curl operator, with vanishing Dirichlet boundary conditions. We prove, under mild regularity of the data of the problem, existence of classical solutions.
References:
[1] |
H. Beirão da Veiga, On the solutions in the large of the two-dimensional flow of a nonviscous
incompressible fluid, J. Differential Equations, 54 (1984), 373–389.
doi: 10.1016/0022-0396(84)90149-9. |
[2] |
H. Beirão da Veiga, Concerning the existence of classical solutions to the Stokes system. On
the minimal assumptions problem, J. Math. Fluid Mech., 16 (2014), 539–550.
doi: 10.1007/s00021-014-0170-9. |
[3] |
H. Beirão da Veiga, On some regularity results for the stationary Stokes system and the 2-D Euler equations, Port. Math., 72 (2015), 285–307.
doi: 10.4171/PM/1969. |
[4] |
H. Beirão da Veiga, Elliptic boundary value problems in spaces of continuous functions,
Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 43–52.
doi: 10.3934/dcdss.2016.9.43. |
[5] |
L. C. Berselli and L. Bisconti, On the existence of almost-periodic solutions for the 2D dissipative Euler equations, Rev. Mat. Iberoam., 31 (2015), 267–290.
doi: 10.4171/RMI/833. |
[6] |
L. C. Berselli and P. Longo, Classical solutions of the divergence equation with Dini-continuous datum, Tech. Report, arXiv (2017) URL http://arXiv.org/abs/1712.07917. Google Scholar |
[7] |
M. E. Bogovskiĭ, Solutions of some problems of vector analysis, associated with the operators
div and grad, in Theory of Cubature Formulas and the Application of Functional Analysis
to Problems of Mathematical Physics, vol. 1980 of Trudy Sem. S. L. Soboleva, No. 1, Akad.
Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, (1980), 5–40,149. |
[8] |
J. Bolik and W. von Wahl, Estimating $\nabla\textbf{u}$ in terms of ${\rm div}\, \textbf{u}$, ${\rm curl}\, \textbf{u}$ either $(ν, \textbf{u})$ or $ν×\textbf{u}$ and
the topology, Math. Methods Appl. Sci., 20 (1997), 737–744.
doi: 10.1002/(SICI)1099-1476(199706)20:9<737::AID-MMA863>3.3.CO;2-9. |
[9] |
W. Borchers and H. Sohr, On the equations ${\rm rot}\, \textbf{v} = \textbf{g}$ and ${\rm div}\, \textbf{u} = f$ with zero boundary
conditions, Hokkaido Math. J., 19 (1990), 67–87.
doi: 10.14492/hokmj/1381517172. |
[10] |
J. Bourgain and H. Brezis, New estimates for elliptic equations and Hodge type systems, J.
Eur. Math. Soc. (JEMS), 9 (2007), 277–315.
doi: 10.4171/JEMS/80. |
[11] |
V. I. Burenkov,
Sobolev Spaces on Domains, vol. 137 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1998.
doi: 10.1007/978-3-663-11374-4. |
[12] |
U. Dini, Fourier Series and Other Analytic Representations of Functions of one Real Variable. (Serie di Fourier ed Altre Rappresentazioni Analitiche Delle Funzioni Di Una Variabile Reale), Nistri, 1880. Google Scholar |
[13] |
U. Dini, Sur la méthode des approximations successives pour les équations aux derivées partielles du deuxième ordre, Acta Math., 25 (1902), 185–230.
doi: 10.1007/BF02419026. |
[14] |
G. P. Galdi,
An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state Problems, Springer Monographs in Mathematics, Springer-Verlag, New York, 2011.
doi: 10.1007/978-0-387-09620-9. |
[15] |
D. Gilbarg and N. S. Trudinger,
Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition. |
[16] |
R. Griesinger, Decompositions of $L^q$ and $H^{1, q}_0$ with respect to the operator ${\rm rot}$, Math. Ann.,
288 (1990), 245–262.
doi: 10.1007/BF01444533. |
[17] |
R. Griesinger, The boundary value problem ${\rm rot}\, u = f, \; u$ vanishing at the boundary and the related decompositions of $L^q$ and $H^{1, q}_0$: Existence, Ann. Univ. Ferrara Sez. VII (N. S.), 36
(1990), 15–43 (1991), URL http://dx.doi.org/10.1007/BF02837204. |
[18] |
H. Helmholtz, Ueber die Theorie der Elektrodynamik. Zweite Abhandlung. Kritisches, J.
Reine Angew. Math., 75 (1873), 35–66.
doi: 10.1515/crll.1873.75.35. |
[19] |
H. Koch, Transport and instability for perfect fluids, Math. Ann., 323 (2002), 491–523.
doi: 10.1007/s002080200312. |
[20] |
A. Korn, Über Minimalflächen, Deren Randkurven Wenig Von Ebenen Kurven Abweichen, Preuss Akad Wiss., 1909. Google Scholar |
[21] |
H. Kozono and T. Yanagisawa, $L^r$-variational inequality for vector fields and the HelmholtzWeyl decomposition in bounded domains, Indiana Univ. Math. J., 58 (2009), 1853–1920.
doi: 10.1512/iumj.2009.58.3605. |
[22] |
S. L. Sobolev, On a theorem of functional analysis, Mat. Sbornik, English Transl. : Amer. Math. Soc. Transl., 34 (1963), 39–68. Google Scholar |
[23] |
S. L. Sobolev,
Introduction to the Theory of Cubature Formulae, Nauka, 1974, (Russian). |
[24] |
W. von Wahl, On necessary and sufficient conditions for the solvability of the equations
${\rm rot}\, u = γ$ and ${\rm div}\, u = \epsilon$ with u vanishing on the boundary, in The Navier-Stokes equations (Oberwolfach, 1988), vol. 1431 of Lecture Notes in Math., Springer, Berlin, 1990, 152–157.
doi: 10.1007/BFb0086065. |
[25] |
H. Weyl, The method of orthogonal projection in potential theory, Duke Math. J., 7 (1940), 411–444.
doi: 10.1215/S0012-7094-40-00725-6. |
show all references
References:
[1] |
H. Beirão da Veiga, On the solutions in the large of the two-dimensional flow of a nonviscous
incompressible fluid, J. Differential Equations, 54 (1984), 373–389.
doi: 10.1016/0022-0396(84)90149-9. |
[2] |
H. Beirão da Veiga, Concerning the existence of classical solutions to the Stokes system. On
the minimal assumptions problem, J. Math. Fluid Mech., 16 (2014), 539–550.
doi: 10.1007/s00021-014-0170-9. |
[3] |
H. Beirão da Veiga, On some regularity results for the stationary Stokes system and the 2-D Euler equations, Port. Math., 72 (2015), 285–307.
doi: 10.4171/PM/1969. |
[4] |
H. Beirão da Veiga, Elliptic boundary value problems in spaces of continuous functions,
Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 43–52.
doi: 10.3934/dcdss.2016.9.43. |
[5] |
L. C. Berselli and L. Bisconti, On the existence of almost-periodic solutions for the 2D dissipative Euler equations, Rev. Mat. Iberoam., 31 (2015), 267–290.
doi: 10.4171/RMI/833. |
[6] |
L. C. Berselli and P. Longo, Classical solutions of the divergence equation with Dini-continuous datum, Tech. Report, arXiv (2017) URL http://arXiv.org/abs/1712.07917. Google Scholar |
[7] |
M. E. Bogovskiĭ, Solutions of some problems of vector analysis, associated with the operators
div and grad, in Theory of Cubature Formulas and the Application of Functional Analysis
to Problems of Mathematical Physics, vol. 1980 of Trudy Sem. S. L. Soboleva, No. 1, Akad.
Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, (1980), 5–40,149. |
[8] |
J. Bolik and W. von Wahl, Estimating $\nabla\textbf{u}$ in terms of ${\rm div}\, \textbf{u}$, ${\rm curl}\, \textbf{u}$ either $(ν, \textbf{u})$ or $ν×\textbf{u}$ and
the topology, Math. Methods Appl. Sci., 20 (1997), 737–744.
doi: 10.1002/(SICI)1099-1476(199706)20:9<737::AID-MMA863>3.3.CO;2-9. |
[9] |
W. Borchers and H. Sohr, On the equations ${\rm rot}\, \textbf{v} = \textbf{g}$ and ${\rm div}\, \textbf{u} = f$ with zero boundary
conditions, Hokkaido Math. J., 19 (1990), 67–87.
doi: 10.14492/hokmj/1381517172. |
[10] |
J. Bourgain and H. Brezis, New estimates for elliptic equations and Hodge type systems, J.
Eur. Math. Soc. (JEMS), 9 (2007), 277–315.
doi: 10.4171/JEMS/80. |
[11] |
V. I. Burenkov,
Sobolev Spaces on Domains, vol. 137 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1998.
doi: 10.1007/978-3-663-11374-4. |
[12] |
U. Dini, Fourier Series and Other Analytic Representations of Functions of one Real Variable. (Serie di Fourier ed Altre Rappresentazioni Analitiche Delle Funzioni Di Una Variabile Reale), Nistri, 1880. Google Scholar |
[13] |
U. Dini, Sur la méthode des approximations successives pour les équations aux derivées partielles du deuxième ordre, Acta Math., 25 (1902), 185–230.
doi: 10.1007/BF02419026. |
[14] |
G. P. Galdi,
An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state Problems, Springer Monographs in Mathematics, Springer-Verlag, New York, 2011.
doi: 10.1007/978-0-387-09620-9. |
[15] |
D. Gilbarg and N. S. Trudinger,
Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition. |
[16] |
R. Griesinger, Decompositions of $L^q$ and $H^{1, q}_0$ with respect to the operator ${\rm rot}$, Math. Ann.,
288 (1990), 245–262.
doi: 10.1007/BF01444533. |
[17] |
R. Griesinger, The boundary value problem ${\rm rot}\, u = f, \; u$ vanishing at the boundary and the related decompositions of $L^q$ and $H^{1, q}_0$: Existence, Ann. Univ. Ferrara Sez. VII (N. S.), 36
(1990), 15–43 (1991), URL http://dx.doi.org/10.1007/BF02837204. |
[18] |
H. Helmholtz, Ueber die Theorie der Elektrodynamik. Zweite Abhandlung. Kritisches, J.
Reine Angew. Math., 75 (1873), 35–66.
doi: 10.1515/crll.1873.75.35. |
[19] |
H. Koch, Transport and instability for perfect fluids, Math. Ann., 323 (2002), 491–523.
doi: 10.1007/s002080200312. |
[20] |
A. Korn, Über Minimalflächen, Deren Randkurven Wenig Von Ebenen Kurven Abweichen, Preuss Akad Wiss., 1909. Google Scholar |
[21] |
H. Kozono and T. Yanagisawa, $L^r$-variational inequality for vector fields and the HelmholtzWeyl decomposition in bounded domains, Indiana Univ. Math. J., 58 (2009), 1853–1920.
doi: 10.1512/iumj.2009.58.3605. |
[22] |
S. L. Sobolev, On a theorem of functional analysis, Mat. Sbornik, English Transl. : Amer. Math. Soc. Transl., 34 (1963), 39–68. Google Scholar |
[23] |
S. L. Sobolev,
Introduction to the Theory of Cubature Formulae, Nauka, 1974, (Russian). |
[24] |
W. von Wahl, On necessary and sufficient conditions for the solvability of the equations
${\rm rot}\, u = γ$ and ${\rm div}\, u = \epsilon$ with u vanishing on the boundary, in The Navier-Stokes equations (Oberwolfach, 1988), vol. 1431 of Lecture Notes in Math., Springer, Berlin, 1990, 152–157.
doi: 10.1007/BFb0086065. |
[25] |
H. Weyl, The method of orthogonal projection in potential theory, Duke Math. J., 7 (1940), 411–444.
doi: 10.1215/S0012-7094-40-00725-6. |
[1] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 |
[2] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[3] |
Yuyuan Ouyang, Trevor Squires. Some worst-case datasets of deterministic first-order methods for solving binary logistic regression. Inverse Problems & Imaging, 2021, 15 (1) : 63-77. doi: 10.3934/ipi.2020047 |
[4] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[5] |
Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021003 |
[6] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[7] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[8] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[9] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[10] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[11] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[12] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[13] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[14] |
Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011 |
[15] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[16] |
Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252 |
[17] |
Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 |
[18] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
[19] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[20] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]