• Previous Article
    On the capacity approach to non-attainability of Hardy's inequality in $\mathbb{R}^N$
  • DCDS-S Home
  • This Issue
  • Next Article
    Classical solutions for the system $\bf {\text{curl}\, v = g}$, with vanishing Dirichlet boundary conditions
April  2019, 12(2): 231-243. doi: 10.3934/dcdss.2019016

Fourth-order problems with Leray-Lions type operators in variable exponent spaces

Department of Applied Mathematics, University of Craiova, 200585 Craiova, Rumania

Received  May 2017 Revised  November 2017 Published  August 2018

The Leray-Lions operators are versatile enough to be particularized to various elliptic operators, so they receive a lot of attention. This paper introduces to the mathematical literature Leray-Lions type operators that are appropriate for the study of the variable exponent problems of higher order. We establish some properties concerning these general operators and then we apply them to a fourth order problem with variable exponents.

Citation: Maria-Magdalena Boureanu. Fourth-order problems with Leray-Lions type operators in variable exponent spaces. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 231-243. doi: 10.3934/dcdss.2019016
References:
[1]

G. A. AfrouziM. Mirzapour and N. T. Chung, Existence and non-existence of solutions for a $p(x)$-biharmonic problem, Electronic Journal of Differential Equations, 2015 (2015), 1-8.   Google Scholar

[2]

A. Ayoujil and A. R. El Amrouss, Continuous spectrum of a fourth order nonhomogeneous elliptic equation with variable exponent, Electron. J. Differential Equations, 2011 (2011), 1-12.   Google Scholar

[3]

A. Ayoujil and A. R. El Amrouss, On the spectrum of a fourth order elliptic equation with variable exponent, Nonlinear Anal., 71 (2009), 4916-4926.  doi: 10.1016/j.na.2009.03.074.  Google Scholar

[4]

M.-M. Boureanu, A new class of nonhomogeneous differential operator and applications to anisotropic systems, Complex Variables and Elliptic Equations, 61 (2016), 712-730.  doi: 10.1080/17476933.2015.1114614.  Google Scholar

[5]

M.-M. BoureanuA. Matei and M. Sofonea, Nonlinear problems with $p(·)$-growth conditions and applications to antiplane contact models, Adv. Nonl. Studies, 14 (2014), 295-313.  doi: 10.1515/ans-2014-0203.  Google Scholar

[6]

M.-M. BoureanuV. Rădulescu and D. Repovš, On a $p(·)$-biharmonic problem with no-flux boundary condition, Computers and Mathematics with Applications, 72 (2016), 2505-2515.  doi: 10.1016/j.camwa.2016.09.017.  Google Scholar

[7]

M.-M. Boureanu and D. N. Udrea, Existence and multiplicity results for elliptic problems with $p(·)$ - growth conditions, Nonl. Anal. RWA, 14 (2013), 1829-1844.  doi: 10.1016/j.nonrwa.2012.12.001.  Google Scholar

[8]

Y. ChenS. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1386-1406.  doi: 10.1137/050624522.  Google Scholar

[9]

F. ColasuonnoP. Pucci and C. Varga, Multiple solutions for an eigenvalue problem involving $p$-Laplacian type operators, Nonlinear Anal., 75 (2012), 4496-4512.  doi: 10.1016/j.na.2011.09.048.  Google Scholar

[10]

D. G. Costa, An Invitation to Variational Methods in Differential Equations, Birkhäuser Boston, 2007. doi: 10.1007/978-0-8176-4536-6.  Google Scholar

[11]

D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Springer Basel, 2013. doi: 10.1007/978-3-0348-0548-3.  Google Scholar

[12]

L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 493-516.  doi: 10.1016/S0294-1449(98)80032-2.  Google Scholar

[13]

C.-P. Dăneţ, Two maximum principles for a nonlinear fourth order equation from thin plate theory, Electronic J. Qualitative Theory of Diff. Eq., 31 (2014), 1-9.   Google Scholar

[14]

L. Diening, Maximal function on generalized Lebesgue spaces Lp(·), Mathematical Inequalities and Applications, 7 (2004), 245-253.  doi: 10.7153/mia-07-27.  Google Scholar

[15]

A. El AmroussF. Moradi and M. Moussaoui, Existence of solutions for fourth-order PDEs with variable exponents, Electron. J. Differ. Equ., 2009 (2009), 1-13.   Google Scholar

[16]

A. R. El Amrouss and A. Ourraoui, Existence of solutions for a boundary problem involving $p(x)$-biharmonic operator, Bol. Soc. Parana. Mat., 31 (2013), 179-192.  doi: 10.5269/bspm.v31i1.15148.  Google Scholar

[17]

X. L. Fan, Solutions for $p(x)$-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl., 312 (2005), 464-477.  doi: 10.1016/j.jmaa.2005.03.057.  Google Scholar

[18]

X. Fan and X. Han, Existence and multiplicity of solutions for $p(x)$-Laplacian equations in ${\mathbb R}^N$, Nonlinear Anal., 59 (2004), 173-188.  doi: 10.1016/j.na.2004.07.009.  Google Scholar

[19]

X. L. Fan and D. Zhao, On the spaces $L^{p(x)}$ and $W^{m, p(x)}$, J. Math. Anal. Appl., 263 (2001), 424-446.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[20]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J., 41 (1991), 592-618.   Google Scholar

[21]

A. J. Kurdila and M. Zabarankin, Convex Functional Analysis, Birkhäuser Verlag, 2005.  Google Scholar

[22]

V. K. Le, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces, Nonlinear Anal., 71 (2009), 3305-3321.  doi: 10.1016/j.na.2009.01.211.  Google Scholar

[23]

J. Leray and J.-L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bulletin de la Société Mathématique de France, 93 (1965), 97-107.   Google Scholar

[24]

L. Li and C. L. Tang, Existence and multiplicity of solutions for a class of $p(x)$-biharmonic equations, Acta Mathematica Scientia, 33 (2013), 155-170.  doi: 10.1016/S0252-9602(12)60202-1.  Google Scholar

[25]

G. Molica BisciV. Radulescu and R. Servadei, Competition phenomena for elliptic equations involving a general operator in divergence form, Anal. Appl., 15 (2017), 51-82.  doi: 10.1142/S0219530515500116.  Google Scholar

[26]

G. Molica Bisci and D. Repovš, Multiple solutions of $p$-biharmonic equations with Navier boundary conditions, Complex Variables and Elliptic Equations, 59 (2014), 271-284.  doi: 10.1080/17476933.2012.734301.  Google Scholar

[27]

T. G. Myers, Thin films with high surface tension, SIAM Review, 40 (1998), 441-462.  doi: 10.1137/S003614459529284X.  Google Scholar

[28]

P. Pucci and V. Rădulescu, The impact of the mountain pass theory in nonlinear analysis: A mathematical survey, Boll. Unione Mat. Ital. Series IX, 3 (2010), 543-582.   Google Scholar

[29]

V. Rădulescu and D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Quantitative Analysis, CRC Press, Taylor & Francis Group, Boca Raton FL, 2015. doi: 10.1201/b18601.  Google Scholar

[30]

M. R${\rm{\dot{u}}}$žiĄka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer–Verlag Berlin, 2002. Google Scholar

[31]

W. Wang and P. Zhao, Nonuniformly nonlinear elliptic equations of $p$-biharmonic type, J. Math. Anal. Appl., 348 (2008), 730-738.  doi: 10.1016/j.jmaa.2008.07.068.  Google Scholar

[32]

A. Zang and Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces, Nonlinear Anal. T.M.A., 69 (2008), 3629-3636.  doi: 10.1016/j.na.2007.10.001.  Google Scholar

[33]

V. V. Zhikov, Averaging of functionals in the calculus of variations and elasticity, Math. USSR Izv., 29 (1987), 33-66.   Google Scholar

show all references

References:
[1]

G. A. AfrouziM. Mirzapour and N. T. Chung, Existence and non-existence of solutions for a $p(x)$-biharmonic problem, Electronic Journal of Differential Equations, 2015 (2015), 1-8.   Google Scholar

[2]

A. Ayoujil and A. R. El Amrouss, Continuous spectrum of a fourth order nonhomogeneous elliptic equation with variable exponent, Electron. J. Differential Equations, 2011 (2011), 1-12.   Google Scholar

[3]

A. Ayoujil and A. R. El Amrouss, On the spectrum of a fourth order elliptic equation with variable exponent, Nonlinear Anal., 71 (2009), 4916-4926.  doi: 10.1016/j.na.2009.03.074.  Google Scholar

[4]

M.-M. Boureanu, A new class of nonhomogeneous differential operator and applications to anisotropic systems, Complex Variables and Elliptic Equations, 61 (2016), 712-730.  doi: 10.1080/17476933.2015.1114614.  Google Scholar

[5]

M.-M. BoureanuA. Matei and M. Sofonea, Nonlinear problems with $p(·)$-growth conditions and applications to antiplane contact models, Adv. Nonl. Studies, 14 (2014), 295-313.  doi: 10.1515/ans-2014-0203.  Google Scholar

[6]

M.-M. BoureanuV. Rădulescu and D. Repovš, On a $p(·)$-biharmonic problem with no-flux boundary condition, Computers and Mathematics with Applications, 72 (2016), 2505-2515.  doi: 10.1016/j.camwa.2016.09.017.  Google Scholar

[7]

M.-M. Boureanu and D. N. Udrea, Existence and multiplicity results for elliptic problems with $p(·)$ - growth conditions, Nonl. Anal. RWA, 14 (2013), 1829-1844.  doi: 10.1016/j.nonrwa.2012.12.001.  Google Scholar

[8]

Y. ChenS. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1386-1406.  doi: 10.1137/050624522.  Google Scholar

[9]

F. ColasuonnoP. Pucci and C. Varga, Multiple solutions for an eigenvalue problem involving $p$-Laplacian type operators, Nonlinear Anal., 75 (2012), 4496-4512.  doi: 10.1016/j.na.2011.09.048.  Google Scholar

[10]

D. G. Costa, An Invitation to Variational Methods in Differential Equations, Birkhäuser Boston, 2007. doi: 10.1007/978-0-8176-4536-6.  Google Scholar

[11]

D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Springer Basel, 2013. doi: 10.1007/978-3-0348-0548-3.  Google Scholar

[12]

L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 493-516.  doi: 10.1016/S0294-1449(98)80032-2.  Google Scholar

[13]

C.-P. Dăneţ, Two maximum principles for a nonlinear fourth order equation from thin plate theory, Electronic J. Qualitative Theory of Diff. Eq., 31 (2014), 1-9.   Google Scholar

[14]

L. Diening, Maximal function on generalized Lebesgue spaces Lp(·), Mathematical Inequalities and Applications, 7 (2004), 245-253.  doi: 10.7153/mia-07-27.  Google Scholar

[15]

A. El AmroussF. Moradi and M. Moussaoui, Existence of solutions for fourth-order PDEs with variable exponents, Electron. J. Differ. Equ., 2009 (2009), 1-13.   Google Scholar

[16]

A. R. El Amrouss and A. Ourraoui, Existence of solutions for a boundary problem involving $p(x)$-biharmonic operator, Bol. Soc. Parana. Mat., 31 (2013), 179-192.  doi: 10.5269/bspm.v31i1.15148.  Google Scholar

[17]

X. L. Fan, Solutions for $p(x)$-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl., 312 (2005), 464-477.  doi: 10.1016/j.jmaa.2005.03.057.  Google Scholar

[18]

X. Fan and X. Han, Existence and multiplicity of solutions for $p(x)$-Laplacian equations in ${\mathbb R}^N$, Nonlinear Anal., 59 (2004), 173-188.  doi: 10.1016/j.na.2004.07.009.  Google Scholar

[19]

X. L. Fan and D. Zhao, On the spaces $L^{p(x)}$ and $W^{m, p(x)}$, J. Math. Anal. Appl., 263 (2001), 424-446.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[20]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J., 41 (1991), 592-618.   Google Scholar

[21]

A. J. Kurdila and M. Zabarankin, Convex Functional Analysis, Birkhäuser Verlag, 2005.  Google Scholar

[22]

V. K. Le, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces, Nonlinear Anal., 71 (2009), 3305-3321.  doi: 10.1016/j.na.2009.01.211.  Google Scholar

[23]

J. Leray and J.-L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bulletin de la Société Mathématique de France, 93 (1965), 97-107.   Google Scholar

[24]

L. Li and C. L. Tang, Existence and multiplicity of solutions for a class of $p(x)$-biharmonic equations, Acta Mathematica Scientia, 33 (2013), 155-170.  doi: 10.1016/S0252-9602(12)60202-1.  Google Scholar

[25]

G. Molica BisciV. Radulescu and R. Servadei, Competition phenomena for elliptic equations involving a general operator in divergence form, Anal. Appl., 15 (2017), 51-82.  doi: 10.1142/S0219530515500116.  Google Scholar

[26]

G. Molica Bisci and D. Repovš, Multiple solutions of $p$-biharmonic equations with Navier boundary conditions, Complex Variables and Elliptic Equations, 59 (2014), 271-284.  doi: 10.1080/17476933.2012.734301.  Google Scholar

[27]

T. G. Myers, Thin films with high surface tension, SIAM Review, 40 (1998), 441-462.  doi: 10.1137/S003614459529284X.  Google Scholar

[28]

P. Pucci and V. Rădulescu, The impact of the mountain pass theory in nonlinear analysis: A mathematical survey, Boll. Unione Mat. Ital. Series IX, 3 (2010), 543-582.   Google Scholar

[29]

V. Rădulescu and D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Quantitative Analysis, CRC Press, Taylor & Francis Group, Boca Raton FL, 2015. doi: 10.1201/b18601.  Google Scholar

[30]

M. R${\rm{\dot{u}}}$žiĄka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer–Verlag Berlin, 2002. Google Scholar

[31]

W. Wang and P. Zhao, Nonuniformly nonlinear elliptic equations of $p$-biharmonic type, J. Math. Anal. Appl., 348 (2008), 730-738.  doi: 10.1016/j.jmaa.2008.07.068.  Google Scholar

[32]

A. Zang and Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces, Nonlinear Anal. T.M.A., 69 (2008), 3629-3636.  doi: 10.1016/j.na.2007.10.001.  Google Scholar

[33]

V. V. Zhikov, Averaging of functionals in the calculus of variations and elasticity, Math. USSR Izv., 29 (1987), 33-66.   Google Scholar

[1]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[2]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[3]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[4]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[5]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[6]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[7]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[8]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[9]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[10]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[11]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[12]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[13]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[14]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[15]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[16]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[17]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[18]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[19]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[20]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (149)
  • HTML views (142)
  • Cited by (1)

Other articles
by authors

[Back to Top]