The Leray-Lions operators are versatile enough to be particularized to various elliptic operators, so they receive a lot of attention. This paper introduces to the mathematical literature Leray-Lions type operators that are appropriate for the study of the variable exponent problems of higher order. We establish some properties concerning these general operators and then we apply them to a fourth order problem with variable exponents.
Citation: |
G. A. Afrouzi
, M. Mirzapour
and N. T. Chung
, Existence and non-existence of solutions for a $p(x)$-biharmonic problem, Electronic Journal of Differential Equations, 2015 (2015)
, 1-8.
![]() ![]() |
|
A. Ayoujil
and A. R. El Amrouss
, Continuous spectrum of a fourth order nonhomogeneous elliptic equation with variable exponent, Electron. J. Differential Equations, 2011 (2011)
, 1-12.
![]() ![]() |
|
A. Ayoujil
and A. R. El Amrouss
, On the spectrum of a fourth order elliptic equation with variable exponent, Nonlinear Anal., 71 (2009)
, 4916-4926.
doi: 10.1016/j.na.2009.03.074.![]() ![]() ![]() |
|
M.-M. Boureanu
, A new class of nonhomogeneous differential operator and applications to anisotropic systems, Complex Variables and Elliptic Equations, 61 (2016)
, 712-730.
doi: 10.1080/17476933.2015.1114614.![]() ![]() ![]() |
|
M.-M. Boureanu
, A. Matei
and M. Sofonea
, Nonlinear problems with $p(·)$-growth conditions and applications to antiplane contact models, Adv. Nonl. Studies, 14 (2014)
, 295-313.
doi: 10.1515/ans-2014-0203.![]() ![]() ![]() |
|
M.-M. Boureanu
, V. Rădulescu
and D. Repovš
, On a $p(·)$-biharmonic problem with no-flux boundary condition, Computers and Mathematics with Applications, 72 (2016)
, 2505-2515.
doi: 10.1016/j.camwa.2016.09.017.![]() ![]() ![]() |
|
M.-M. Boureanu
and D. N. Udrea
, Existence and multiplicity results for elliptic problems with $p(·)$ - growth conditions, Nonl. Anal. RWA, 14 (2013)
, 1829-1844.
doi: 10.1016/j.nonrwa.2012.12.001.![]() ![]() ![]() |
|
Y. Chen
, S. Levine
and M. Rao
, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006)
, 1386-1406.
doi: 10.1137/050624522.![]() ![]() ![]() |
|
F. Colasuonno
, P. Pucci
and C. Varga
, Multiple solutions for an eigenvalue problem involving $p$-Laplacian type operators, Nonlinear Anal., 75 (2012)
, 4496-4512.
doi: 10.1016/j.na.2011.09.048.![]() ![]() ![]() |
|
D. G. Costa,
An Invitation to Variational Methods in Differential Equations, Birkhäuser Boston, 2007.
doi: 10.1007/978-0-8176-4536-6.![]() ![]() ![]() |
|
D. Cruz-Uribe and A. Fiorenza,
Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Springer Basel, 2013.
doi: 10.1007/978-3-0348-0548-3.![]() ![]() ![]() |
|
L. Damascelli
, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998)
, 493-516.
doi: 10.1016/S0294-1449(98)80032-2.![]() ![]() ![]() |
|
C.-P. Dăneţ
, Two maximum principles for a nonlinear fourth order equation from thin plate theory, Electronic J. Qualitative Theory of Diff. Eq., 31 (2014)
, 1-9.
![]() ![]() |
|
L. Diening
, Maximal function on generalized Lebesgue spaces Lp(·), Mathematical Inequalities
and Applications, 7 (2004)
, 245-253.
doi: 10.7153/mia-07-27.![]() ![]() ![]() |
|
A. El Amrouss
, F. Moradi
and M. Moussaoui
, Existence of solutions for fourth-order PDEs with variable exponents, Electron. J. Differ. Equ., 2009 (2009)
, 1-13.
![]() ![]() |
|
A. R. El Amrouss
and A. Ourraoui
, Existence of solutions for a boundary problem involving $p(x)$-biharmonic operator, Bol. Soc. Parana. Mat., 31 (2013)
, 179-192.
doi: 10.5269/bspm.v31i1.15148.![]() ![]() ![]() |
|
X. L. Fan
, Solutions for $p(x)$-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl., 312 (2005)
, 464-477.
doi: 10.1016/j.jmaa.2005.03.057.![]() ![]() ![]() |
|
X. Fan
and X. Han
, Existence and multiplicity of solutions for $p(x)$-Laplacian equations in ${\mathbb R}^N$, Nonlinear Anal., 59 (2004)
, 173-188.
doi: 10.1016/j.na.2004.07.009.![]() ![]() ![]() |
|
X. L. Fan
and D. Zhao
, On the spaces $L^{p(x)}$ and $W^{m, p(x)}$, J. Math. Anal. Appl., 263 (2001)
, 424-446.
doi: 10.1006/jmaa.2000.7617.![]() ![]() ![]() |
|
O. Kováčik
and J. Rákosník
, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J., 41 (1991)
, 592-618.
![]() ![]() |
|
A. J. Kurdila and M. Zabarankin,
Convex Functional Analysis, Birkhäuser Verlag, 2005.
![]() ![]() |
|
V. K. Le
, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces, Nonlinear Anal., 71 (2009)
, 3305-3321.
doi: 10.1016/j.na.2009.01.211.![]() ![]() ![]() |
|
J. Leray
and J.-L. Lions
, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bulletin de la Société Mathématique de France, 93 (1965)
, 97-107.
![]() ![]() |
|
L. Li
and C. L. Tang
, Existence and multiplicity of solutions for a class of $p(x)$-biharmonic equations, Acta Mathematica Scientia, 33 (2013)
, 155-170.
doi: 10.1016/S0252-9602(12)60202-1.![]() ![]() ![]() |
|
G. Molica Bisci
, V. Radulescu
and R. Servadei
, Competition phenomena for elliptic equations involving a general operator in divergence form, Anal. Appl., 15 (2017)
, 51-82.
doi: 10.1142/S0219530515500116.![]() ![]() ![]() |
|
G. Molica Bisci
and D. Repovš
, Multiple solutions of $p$-biharmonic equations with Navier boundary conditions, Complex Variables and Elliptic Equations, 59 (2014)
, 271-284.
doi: 10.1080/17476933.2012.734301.![]() ![]() ![]() |
|
T. G. Myers
, Thin films with high surface tension, SIAM Review, 40 (1998)
, 441-462.
doi: 10.1137/S003614459529284X.![]() ![]() ![]() |
|
P. Pucci
and V. Rădulescu
, The impact of the mountain pass theory in nonlinear analysis: A mathematical survey, Boll. Unione Mat. Ital. Series IX, 3 (2010)
, 543-582.
![]() ![]() |
|
V. Rădulescu and D. Repovš,
Partial Differential Equations with Variable Exponents: Variational Methods and Quantitative Analysis, CRC Press, Taylor & Francis Group, Boca Raton FL, 2015.
doi: 10.1201/b18601.![]() ![]() ![]() |
|
M. R${\rm{\dot{u}}}$žiĄka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer–Verlag
Berlin, 2002.
![]() |
|
W. Wang
and P. Zhao
, Nonuniformly nonlinear elliptic equations of $p$-biharmonic type, J. Math. Anal. Appl., 348 (2008)
, 730-738.
doi: 10.1016/j.jmaa.2008.07.068.![]() ![]() ![]() |
|
A. Zang
and Y. Fu
, Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces, Nonlinear Anal. T.M.A., 69 (2008)
, 3629-3636.
doi: 10.1016/j.na.2007.10.001.![]() ![]() ![]() |
|
V. V. Zhikov
, Averaging of functionals in the calculus of variations and elasticity, Math. USSR Izv., 29 (1987)
, 33-66.
![]() |