April  2019, 12(2): 245-250. doi: 10.3934/dcdss.2019017

On the capacity approach to non-attainability of Hardy's inequality in $\mathbb{R}^N$

1. 

Dip. di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria

2. 

RISM-Riemann International School of Mathematics, via G.B. Vico 46, 21100 - Varese, Italy

3. 

Dip. di Matematica, Università degli Studi di Milano, via C. Saldini 50, 20133 - Milano, Italy

* Corresponding author: Daniele Cassani

In honor of Vicentiu Rădulescu on the occasion of his 60th birthday, with friendship and admiration

Received  August 2017 Revised  December 2017 Published  August 2018

In this note we exploit nonlinear capacity estimates in the spirit of Mitidieri-Pohozaev [15] in the context of Lorentz spaces. This from one side yields a simple proof, though non-optimal, of non-attainability of Hardy's inequality in $\mathbb{R}^N$, on the other side gives a partial positive answer to a conjecture raised in [15].

Citation: Daniele Cassani, Bernhard Ruf, Cristina Tarsi. On the capacity approach to non-attainability of Hardy's inequality in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 245-250. doi: 10.3934/dcdss.2019017
References:
[1]

A. Alvino, Sulla diseguaglianza di Sobolev in spazi di Lorentz, Boll. Un. Mat. Ital. A, 14 (1977), 148-156.   Google Scholar

[2]

C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics, 129, Boston Academic Press, 1988.  Google Scholar

[3]

H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469.   Google Scholar

[4]

D. Cassani, B. Ruf and C. Tarsi, Equivalent and attained version of Hardy's inequality in $\mathbb{R}^n$, preprint, (2017), arXiv: 1711.03763. Google Scholar

[5]

D. CassaniF. Sani and C. Tarsi, Equivalent Moser type inequalities in $\mathbb{R}^2$ and the zero mass case, J. Funct. Anal., 267 (2014), 4236-4263.  doi: 10.1016/j.jfa.2014.09.022.  Google Scholar

[6]

A. Cianchi and A. Ferone, Hardy inequalities with non-standard remainder terms, Ann. Inst. H. Poincare. An. Non Lineaire, 25 (2008), 889-906.  doi: 10.1016/j.anihpc.2007.05.003.  Google Scholar

[7]

S. Costea, Sobolev-Lorentz spaces in the Euclidean setting and counterexamples, Nonlinear Anal., 152 (2017), 149-182.  doi: 10.1016/j.na.2017.01.001.  Google Scholar

[8]

E. B. Davies, A review of Hardy inequalities, Oper. Theory Adv. Appl., 110 (1999), 55-67.   Google Scholar

[9]

B. DevyverM. Fraas and Y. Pinchover, Optimal hardy weight for second-order elliptic operator: An answer to a problem of Agmon, J. Funct. Anal., 266 (2014), 4422-4489.  doi: 10.1016/j.jfa.2014.01.017.  Google Scholar

[10]

S. Filippas and A. Tertikas, Optimizing improved Hardy inequalities, J. Funct. Anal., 192 (2002), 186-233.  doi: 10.1006/jfan.2001.3900.  Google Scholar

[11]

N. Ghoussoub and A. Moradifam, Functional Inequalities: New Perspectives and New Applications. Mathematical Surveys and Monographs, 187 Amer. Math. Soc., Providence, RI, 2013. doi: 10.1090/surv/187.  Google Scholar

[12]

A. KufnerL. Maligranda and L.-E. Persson, The prehistory of the Hardy inequality, Amer. Math. Monthly, 113 (2006), 715-732.  doi: 10.1080/00029890.2006.11920356.  Google Scholar

[13]

G. G. Lorentz, Some new functional spaces, Ann. of Math., 51 (1950), 37-55.  doi: 10.2307/1969496.  Google Scholar

[14]

V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Second ed., Grundlehren der Mathematischen Wissenschaften 342, Springer, 2011. doi: 10.1007/978-3-642-15564-2.  Google Scholar

[15]

E. Mitidieri and S. Pohozaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234 (2001), 1-362.   Google Scholar

[16]

B. Opic and A. Kufner, Hardy-type Inequalities, Pitman Research Notes in Mathematics Series, 219, 1990.  Google Scholar

show all references

References:
[1]

A. Alvino, Sulla diseguaglianza di Sobolev in spazi di Lorentz, Boll. Un. Mat. Ital. A, 14 (1977), 148-156.   Google Scholar

[2]

C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics, 129, Boston Academic Press, 1988.  Google Scholar

[3]

H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469.   Google Scholar

[4]

D. Cassani, B. Ruf and C. Tarsi, Equivalent and attained version of Hardy's inequality in $\mathbb{R}^n$, preprint, (2017), arXiv: 1711.03763. Google Scholar

[5]

D. CassaniF. Sani and C. Tarsi, Equivalent Moser type inequalities in $\mathbb{R}^2$ and the zero mass case, J. Funct. Anal., 267 (2014), 4236-4263.  doi: 10.1016/j.jfa.2014.09.022.  Google Scholar

[6]

A. Cianchi and A. Ferone, Hardy inequalities with non-standard remainder terms, Ann. Inst. H. Poincare. An. Non Lineaire, 25 (2008), 889-906.  doi: 10.1016/j.anihpc.2007.05.003.  Google Scholar

[7]

S. Costea, Sobolev-Lorentz spaces in the Euclidean setting and counterexamples, Nonlinear Anal., 152 (2017), 149-182.  doi: 10.1016/j.na.2017.01.001.  Google Scholar

[8]

E. B. Davies, A review of Hardy inequalities, Oper. Theory Adv. Appl., 110 (1999), 55-67.   Google Scholar

[9]

B. DevyverM. Fraas and Y. Pinchover, Optimal hardy weight for second-order elliptic operator: An answer to a problem of Agmon, J. Funct. Anal., 266 (2014), 4422-4489.  doi: 10.1016/j.jfa.2014.01.017.  Google Scholar

[10]

S. Filippas and A. Tertikas, Optimizing improved Hardy inequalities, J. Funct. Anal., 192 (2002), 186-233.  doi: 10.1006/jfan.2001.3900.  Google Scholar

[11]

N. Ghoussoub and A. Moradifam, Functional Inequalities: New Perspectives and New Applications. Mathematical Surveys and Monographs, 187 Amer. Math. Soc., Providence, RI, 2013. doi: 10.1090/surv/187.  Google Scholar

[12]

A. KufnerL. Maligranda and L.-E. Persson, The prehistory of the Hardy inequality, Amer. Math. Monthly, 113 (2006), 715-732.  doi: 10.1080/00029890.2006.11920356.  Google Scholar

[13]

G. G. Lorentz, Some new functional spaces, Ann. of Math., 51 (1950), 37-55.  doi: 10.2307/1969496.  Google Scholar

[14]

V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Second ed., Grundlehren der Mathematischen Wissenschaften 342, Springer, 2011. doi: 10.1007/978-3-642-15564-2.  Google Scholar

[15]

E. Mitidieri and S. Pohozaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234 (2001), 1-362.   Google Scholar

[16]

B. Opic and A. Kufner, Hardy-type Inequalities, Pitman Research Notes in Mathematics Series, 219, 1990.  Google Scholar

[1]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[2]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[3]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[4]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[5]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[6]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[7]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[8]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[9]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[10]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[11]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[12]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[13]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[14]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[15]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[16]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[17]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[18]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[19]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[20]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (103)
  • HTML views (110)
  • Cited by (0)

Other articles
by authors

[Back to Top]