April  2019, 12(2): 251-265. doi: 10.3934/dcdss.2019018

Local Lipschitz continuity of minimizers with mild assumptions on the $x$-dependence

1. 

Dipartimento di Scienze Fisiche, Informatiche e Matematiche, via Campi 213/b, I-41125 Modena, Italy

2. 

Dipartimento di Matematica ed Informatica "U. Dini", viale Morgagni 67/a, I-50134 Firenze, Italy

Received  August 2017 Revised  December 2017 Published  August 2018

Fund Project: The authors are members of GNAMPA (Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica)

We are interested in the regularity of local minimizers of energy integrals of the Calculus of Variations. Precisely, let $Ω $ be an open subset of $\mathbb{R}^{n}$. Let $f≤\left( {x, \xi } \right) $ be a real function defined in $Ω × \mathbb{R}^{n}$ satisfying the growth condition $|{f_{\xi x}}\left( {x, \xi } \right)| \le h\left( x \right)|\xi {{\rm{|}}^{p - 1}}$, for $x∈ Ω $ and $\xi ∈ \mathbb{R}^{n}$ with $|\xi {\rm{|}} \ge {M_0}$ for some $M_{0}≥ 0$, with $h \in L_{{\rm{loc}}}^r\left( \Omega \right) $ for some $r>n$. This growth condition is more general than those considered in the mathematical literature and allows us to handle some cases recently studied in similar contexts. We associate to $f\left( {x, \xi } \right) $ the so-called natural $p-$growth conditions on the second derivatives ${f_{\xi \xi }}\left( {x, \xi } \right)$; i.e., $\left( {p - 2} \right) - $growth for $|{f_{\xi \xi }}\left( {x, \xi } \right)| $ from above and $\left( {p - 2} \right) - $growth from below for the quadratic form $({f_{\xi \xi }}\left( {x, \xi } \right)\lambda , \lambda {\rm{ }})$; for details see either (3) or (7) below. We prove that these conditions are sufficient for the local Lipschitz continuity of any minimizer $u \in W_{{\rm{loc}}}^{1, p}\left( \Omega \right) $ of the energy integral $\int_\Omega {f(x, Du\left( x \right)){\mkern 1mu} dx} $.

Citation: Michela Eleuteri, Paolo Marcellini, Elvira Mascolo. Local Lipschitz continuity of minimizers with mild assumptions on the $x$-dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 251-265. doi: 10.3934/dcdss.2019018
References:
[1]

A. L. BaisónA. ClopR. GiovaJ. Orobitg and A. Passarelli di Napoli, Fractional differentiability for solutions of nonlinear elliptic equations, Potential Anal., 46 (2017), 403-430.  doi: 10.1007/s11118-016-9585-7.  Google Scholar

[2]

S. BaraketS. ChebbiN. Chorfi and V. Radulescu, Non-autonomous eigenvalue problems with variable $(p_{1}, p_{2})-$growth, Adv. Nonlinear Stud., 17 (2017), 781-792.  doi: 10.1515/ans-2016-6020.  Google Scholar

[3]

P. Baroni, M. Colombo and G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal., (Special issue in honor of Enzo Mitidieri for his 60th birthday), 121 (2015), 206–222. doi: 10.1016/j.na.2014.11.001.  Google Scholar

[4]

P. Baroni, M. Colombo and G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., (Special issue for N. Ural'tseva), 27 (2016), 347–379. doi: 10.1090/spmj/1392.  Google Scholar

[5]

M. M. BoureanuP. Pucci and V. Radulescu, Multiplicity of solutions for a class of anisotropic elliptic equations with variable exponent, Complex Var. Elliptic Equ., 56 (2011), 755-767.  doi: 10.1080/17476931003786709.  Google Scholar

[6]

M. Chipot and L. C. Evans, Linearisation at infinity and Lipschitz estimates for certain problems in the calculus of variations, Proc. Roy. Soc. Edinburgh Sect. A, 102 (1986), 291-303.  doi: 10.1017/S0308210500026378.  Google Scholar

[7]

M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Rat. Mech. Anal., 215 (2015), 443-496.  doi: 10.1007/s00205-014-0785-2.  Google Scholar

[8]

M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Rat. Mech. Anal., 218 (2015), 219-273.  doi: 10.1007/s00205-015-0859-9.  Google Scholar

[9]

G. CupiniF. GiannettiR. Giova and A Passarelli di Napoli, Higher integrability for minimizers of asymptotically convex integrals with discontinuous coefficients, Nonlinear Anal., 154 (2017), 7-24.  doi: 10.1016/j.na.2016.02.017.  Google Scholar

[10]

G. CupiniM. Guidorzi and E. Mascolo, Regularity of minimizers of vectorial integrals with pq growth, Nonlinear Anal., 54 (2003), 591-616.  doi: 10.1016/S0362-546X(03)00087-7.  Google Scholar

[11]

G. CupiniP. Marcellini and E. Mascolo, Existence and regularity for elliptic equations under p, q-growth, Adv. Differential Equations, 19 (2014), 693-724.   Google Scholar

[12]

E. DiBenedetto, $\mathcal{C}^{1+\alpha} $ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., TMA, 7 (1983), 827-850.  doi: 10.1016/0362-546X(83)90061-5.  Google Scholar

[13]

M. EleuteriP. Marcellini and E. Mascolo, Lipschitz estimates for systems with ellipticity conditions at infinity, Ann. Mat. Pura Appl., 195 (2016), 1575-1603.  doi: 10.1007/s10231-015-0529-4.  Google Scholar

[14]

M. EleuteriP. Marcellini and E. Mascolo, Lipschitz continuity for functionals with variable exponents, Rend. Lincei Mat. Appl., 27 (2016), 61-87.  doi: 10.4171/RLM/723.  Google Scholar

[15]

M. Eleuteri, P. Marcellini and E. Mascolo, Regularity for scalar integrals without structure conditions, Adv. Calc. Var., (2018), in press. doi: 10.1515/acv-2017-0037.  Google Scholar

[16]

M. Eleuteri and A. Passarelli di Napoli, Higher differentiability for solutions to a class of obstacle problems, submitted. Google Scholar

[17]

I. FonsecaN. Fusco and P. Marcellini, An existence result for a nonconvex variational problem via regularity, ESAIM: Control, Optimisation and Calculus of Variations., 7 (2002), 69-95.  doi: 10.1051/cocv:2002004.  Google Scholar

[18]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. doi: 10.1142/9789812795557.  Google Scholar

[19]

O. Ladyzhenskaya and N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York and London, 1968.  Google Scholar

[20]

M. MihailescuP. Pucci and V. Radulescu, Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, C. R. Math. Acad. Sci. Paris, 345 (2007), 561-566.  doi: 10.1016/j.crma.2007.10.012.  Google Scholar

[21]

M. MihailescuP. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340 (2008), 687-698.  doi: 10.1016/j.jmaa.2007.09.015.  Google Scholar

[22]

A. Passarelli di Napoli, Higher differentiability of minimizers of variational integrals with Sobolev coefficients, Advances in Calculus of Variations, 7 (2014), 59-89.  doi: 10.1515/acv-2012-0006.  Google Scholar

[23]

V. Radulescu and D. Repovs, Partial Differential Equations with Variable Exponents, Variational methods and qualitative analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015. xxi+301 pp. doi: 10.1201/b18601.  Google Scholar

show all references

References:
[1]

A. L. BaisónA. ClopR. GiovaJ. Orobitg and A. Passarelli di Napoli, Fractional differentiability for solutions of nonlinear elliptic equations, Potential Anal., 46 (2017), 403-430.  doi: 10.1007/s11118-016-9585-7.  Google Scholar

[2]

S. BaraketS. ChebbiN. Chorfi and V. Radulescu, Non-autonomous eigenvalue problems with variable $(p_{1}, p_{2})-$growth, Adv. Nonlinear Stud., 17 (2017), 781-792.  doi: 10.1515/ans-2016-6020.  Google Scholar

[3]

P. Baroni, M. Colombo and G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal., (Special issue in honor of Enzo Mitidieri for his 60th birthday), 121 (2015), 206–222. doi: 10.1016/j.na.2014.11.001.  Google Scholar

[4]

P. Baroni, M. Colombo and G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., (Special issue for N. Ural'tseva), 27 (2016), 347–379. doi: 10.1090/spmj/1392.  Google Scholar

[5]

M. M. BoureanuP. Pucci and V. Radulescu, Multiplicity of solutions for a class of anisotropic elliptic equations with variable exponent, Complex Var. Elliptic Equ., 56 (2011), 755-767.  doi: 10.1080/17476931003786709.  Google Scholar

[6]

M. Chipot and L. C. Evans, Linearisation at infinity and Lipschitz estimates for certain problems in the calculus of variations, Proc. Roy. Soc. Edinburgh Sect. A, 102 (1986), 291-303.  doi: 10.1017/S0308210500026378.  Google Scholar

[7]

M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Rat. Mech. Anal., 215 (2015), 443-496.  doi: 10.1007/s00205-014-0785-2.  Google Scholar

[8]

M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Rat. Mech. Anal., 218 (2015), 219-273.  doi: 10.1007/s00205-015-0859-9.  Google Scholar

[9]

G. CupiniF. GiannettiR. Giova and A Passarelli di Napoli, Higher integrability for minimizers of asymptotically convex integrals with discontinuous coefficients, Nonlinear Anal., 154 (2017), 7-24.  doi: 10.1016/j.na.2016.02.017.  Google Scholar

[10]

G. CupiniM. Guidorzi and E. Mascolo, Regularity of minimizers of vectorial integrals with pq growth, Nonlinear Anal., 54 (2003), 591-616.  doi: 10.1016/S0362-546X(03)00087-7.  Google Scholar

[11]

G. CupiniP. Marcellini and E. Mascolo, Existence and regularity for elliptic equations under p, q-growth, Adv. Differential Equations, 19 (2014), 693-724.   Google Scholar

[12]

E. DiBenedetto, $\mathcal{C}^{1+\alpha} $ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., TMA, 7 (1983), 827-850.  doi: 10.1016/0362-546X(83)90061-5.  Google Scholar

[13]

M. EleuteriP. Marcellini and E. Mascolo, Lipschitz estimates for systems with ellipticity conditions at infinity, Ann. Mat. Pura Appl., 195 (2016), 1575-1603.  doi: 10.1007/s10231-015-0529-4.  Google Scholar

[14]

M. EleuteriP. Marcellini and E. Mascolo, Lipschitz continuity for functionals with variable exponents, Rend. Lincei Mat. Appl., 27 (2016), 61-87.  doi: 10.4171/RLM/723.  Google Scholar

[15]

M. Eleuteri, P. Marcellini and E. Mascolo, Regularity for scalar integrals without structure conditions, Adv. Calc. Var., (2018), in press. doi: 10.1515/acv-2017-0037.  Google Scholar

[16]

M. Eleuteri and A. Passarelli di Napoli, Higher differentiability for solutions to a class of obstacle problems, submitted. Google Scholar

[17]

I. FonsecaN. Fusco and P. Marcellini, An existence result for a nonconvex variational problem via regularity, ESAIM: Control, Optimisation and Calculus of Variations., 7 (2002), 69-95.  doi: 10.1051/cocv:2002004.  Google Scholar

[18]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. doi: 10.1142/9789812795557.  Google Scholar

[19]

O. Ladyzhenskaya and N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York and London, 1968.  Google Scholar

[20]

M. MihailescuP. Pucci and V. Radulescu, Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, C. R. Math. Acad. Sci. Paris, 345 (2007), 561-566.  doi: 10.1016/j.crma.2007.10.012.  Google Scholar

[21]

M. MihailescuP. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340 (2008), 687-698.  doi: 10.1016/j.jmaa.2007.09.015.  Google Scholar

[22]

A. Passarelli di Napoli, Higher differentiability of minimizers of variational integrals with Sobolev coefficients, Advances in Calculus of Variations, 7 (2014), 59-89.  doi: 10.1515/acv-2012-0006.  Google Scholar

[23]

V. Radulescu and D. Repovs, Partial Differential Equations with Variable Exponents, Variational methods and qualitative analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015. xxi+301 pp. doi: 10.1201/b18601.  Google Scholar

[1]

Pavel Drábek, Stephen Robinson. Continua of local minimizers in a quasilinear model of phase transitions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 163-172. doi: 10.3934/dcds.2013.33.163

[2]

Antônio Luiz Pereira, Severino Horácio da Silva. Continuity of global attractors for a class of non local evolution equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1073-1100. doi: 10.3934/dcds.2010.26.1073

[3]

Hongxiu Zhong, Guoliang Chen, Xueping Guo. Semi-local convergence of the Newton-HSS method under the center Lipschitz condition. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 85-99. doi: 10.3934/naco.2019007

[4]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[5]

Aneta Wróblewska-Kamińska. Local pressure methods in Orlicz spaces for the motion of rigid bodies in a non-Newtonian fluid with general growth conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1417-1425. doi: 10.3934/dcdss.2013.6.1417

[6]

Sami Aouaoui. On some local-nonlocal elliptic equation involving nonlinear terms with exponential growth. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1767-1784. doi: 10.3934/cpaa.2017086

[7]

Dashun Xu, Z. Feng. A metapopulation model with local competitions. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 495-510. doi: 10.3934/dcdsb.2009.12.495

[8]

Valentin Afraimovich, Jean-Rene Chazottes and Benoit Saussol. Local dimensions for Poincare recurrences. Electronic Research Announcements, 2000, 6: 64-74.

[9]

Vladimír Špitalský. Local correlation entropy. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5711-5733. doi: 10.3934/dcds.2018249

[10]

Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505

[11]

Aram L. Karakhanyan. Lipschitz continuity of free boundary in the continuous casting problem with divergence form elliptic equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 261-277. doi: 10.3934/dcds.2016.36.261

[12]

Roland Martin. On simple Igusa local zeta functions. Electronic Research Announcements, 1995, 1: 108-111.

[13]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic & Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[14]

Alberto A. Pinto, João P. Almeida, Telmo Parreira. Local market structure in a Hotelling town. Journal of Dynamics & Games, 2016, 3 (1) : 75-100. doi: 10.3934/jdg.2016004

[15]

Alessandro Morando, Yuri Trakhinin, Paola Trebeschi. On local existence of MHD contact discontinuities. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 289-313. doi: 10.3934/dcdss.2016.9.289

[16]

Marcus A. Khuri. On the local solvability of Darboux's equation. Conference Publications, 2009, 2009 (Special) : 451-456. doi: 10.3934/proc.2009.2009.451

[17]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271

[18]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Electronic Research Announcements, 2010, 17: 68-79. doi: 10.3934/era.2010.17.68

[19]

Armel Ovono Andami. From local to nonlocal in a diffusion model. Conference Publications, 2011, 2011 (Special) : 54-60. doi: 10.3934/proc.2011.2011.54

[20]

Neil S. Trudinger. On the local theory of prescribed Jacobian equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1663-1681. doi: 10.3934/dcds.2014.34.1663

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (63)
  • HTML views (113)
  • Cited by (0)

[Back to Top]