We consider a nonlinear elliptic equation with Robin boundary condition driven by the p-Laplacian and with a reaction term which depends also on the gradient. By using a topological approach based on the Leray-Schauder alternative principle, we show the existence of a smooth solution.
Citation: |
[1] |
F. Faraci, D. Motreanu and D. Puglisi, Positive solutions of quasi-linear elliptic equations with dependence on the gradient, Calc. Var., 54 (2015), 525-538.
doi: 10.1007/s00526-014-0793-y.![]() ![]() ![]() |
[2] |
D. de Figueiredo, M. Girardi and M. Matzeu, Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques, Diff. Integral Equ., 17 (2004), 119-126.
![]() ![]() |
[3] |
L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Series in Mathematical Analysis and Applications 9, Chapman & Hall/CRC, Boca Raton, FL, 2006.
doi: MR2168068.![]() ![]() |
[4] |
L. Gasinski and N. S. Papageorgiou, Positive solutions for nonlinear elliptic problems with dependence on the gradient, J. Differential Equations, 263 (2017), 1451-1476.
doi: 10.1016/j.jde.2017.03.021.![]() ![]() ![]() |
[5] |
M. Girardi and M. Matzeu, Positive and negative solutions of a quasilinear elliptic equation by a mountain pass method and truncature techniques, Nonlinear Anal., 59 (2004), 199-210.
doi: 10.1016/j.na.2004.04.014.![]() ![]() ![]() |
[6] |
N. B. Huy, B. T. Quan and N. H. Khanh, Existence and multiplicity results for generalized logistic equations, Nonlinear Anal., 144 (2016), 77-92.
doi: 10.1016/j.na.2016.06.001.![]() ![]() ![]() |
[7] |
G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.
doi: 10.1016/0362-546X(88)90053-3.![]() ![]() ![]() |
[8] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou,
Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.
doi: 10.1007/978-1-4614-9323-5.![]() ![]() |
[9] |
D. Mugnai and N. S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 11 (2012), 729-788.
doi: 10.2422/2036-2145.201012_003.![]() ![]() ![]() |
[10] |
N. S. Papageorgiou and V. D. Radulescu, Multiple solutions with precise sign information for nonlinear Robin problems, J. Differential Equations, 256 (2014), 2449-2479.
doi: 10.1016/j.jde.2014.01.010.![]() ![]() ![]() |
[11] |
N. S. Papageorgiou and V. D. Radulescu, Nonlinear, nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear Stud., 16 (2016), 737-764.
doi: 10.1515/ans-2016-0023.![]() ![]() ![]() |
[12] |
N. S. Papageorgiou, V. D. Radulescu and D. D. Repovs, Nonlinear elliptic inclusions with unilateral constraint and dependence on the gradient, Appl. Math. Optim., (2016), 1-23.
doi: 10.1007/s00245-016-9392-y.![]() ![]() |
[13] |
D. Ruiz, A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Differential Equations, 199 (2004), 96-114.
doi: 10.1016/j.jde.2003.10.021.![]() ![]() ![]() |