April  2019, 12(2): 287-295. doi: 10.3934/dcdss.2019020

Robin problems for the p-Laplacian with gradient dependence

1. 

Dipartimento di Matematica, Università di Bari, Via E. Orabona 4, 70125 Bari, Italy

2. 

Dipartimento di Scienze Ecologiche e Biologiche (DEB), Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy

3. 

Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece

* Corresponding author: Dimitri Mugnai

Dedicated to Vicentiu, on the occasion of his 60th birthday, with sincere friendship and esteem

Received  June 2017 Revised  November 2017 Published  August 2018

Fund Project: The first author is member of the INDAM Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA). Her research is supported by the 2017 INdAM-GNAMPA Project Comportamento asintotico e controllo di equazioni di evoluzione non lineari. The second author is member of the INDAM Gruppo Nazionale per l'Analisi Matematica, la Probabilità a e le loro Applicazioni (GNAMPA). His research is supported by the 2017 INdAM-GNAMPA Project Equazioni Differenziali Non Lineari and by the M.I.U.R. project Variational methods, with applications to problems in mathematical physics and geometry (2015KB9WPT 009).

We consider a nonlinear elliptic equation with Robin boundary condition driven by the p-Laplacian and with a reaction term which depends also on the gradient. By using a topological approach based on the Leray-Schauder alternative principle, we show the existence of a smooth solution.

Citation: Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020
References:
[1]

F. FaraciD. Motreanu and D. Puglisi, Positive solutions of quasi-linear elliptic equations with dependence on the gradient, Calc. Var., 54 (2015), 525-538.  doi: 10.1007/s00526-014-0793-y.  Google Scholar

[2]

D. de FigueiredoM. Girardi and M. Matzeu, Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques, Diff. Integral Equ., 17 (2004), 119-126.   Google Scholar

[3]

L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Series in Mathematical Analysis and Applications 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. doi: MR2168068.  Google Scholar

[4]

L. Gasinski and N. S. Papageorgiou, Positive solutions for nonlinear elliptic problems with dependence on the gradient, J. Differential Equations, 263 (2017), 1451-1476.  doi: 10.1016/j.jde.2017.03.021.  Google Scholar

[5]

M. Girardi and M. Matzeu, Positive and negative solutions of a quasilinear elliptic equation by a mountain pass method and truncature techniques, Nonlinear Anal., 59 (2004), 199-210.  doi: 10.1016/j.na.2004.04.014.  Google Scholar

[6]

N. B. HuyB. T. Quan and N. H. Khanh, Existence and multiplicity results for generalized logistic equations, Nonlinear Anal., 144 (2016), 77-92.  doi: 10.1016/j.na.2016.06.001.  Google Scholar

[7]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[8]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014. doi: 10.1007/978-1-4614-9323-5.  Google Scholar

[9]

D. Mugnai and N. S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 11 (2012), 729-788.  doi: 10.2422/2036-2145.201012_003.  Google Scholar

[10]

N. S. Papageorgiou and V. D. Radulescu, Multiple solutions with precise sign information for nonlinear Robin problems, J. Differential Equations, 256 (2014), 2449-2479.  doi: 10.1016/j.jde.2014.01.010.  Google Scholar

[11]

N. S. Papageorgiou and V. D. Radulescu, Nonlinear, nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear Stud., 16 (2016), 737-764.  doi: 10.1515/ans-2016-0023.  Google Scholar

[12]

N. S. Papageorgiou, V. D. Radulescu and D. D. Repovs, Nonlinear elliptic inclusions with unilateral constraint and dependence on the gradient, Appl. Math. Optim., (2016), 1-23. doi: 10.1007/s00245-016-9392-y.  Google Scholar

[13]

D. Ruiz, A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Differential Equations, 199 (2004), 96-114.  doi: 10.1016/j.jde.2003.10.021.  Google Scholar

show all references

Dedicated to Vicentiu, on the occasion of his 60th birthday, with sincere friendship and esteem

References:
[1]

F. FaraciD. Motreanu and D. Puglisi, Positive solutions of quasi-linear elliptic equations with dependence on the gradient, Calc. Var., 54 (2015), 525-538.  doi: 10.1007/s00526-014-0793-y.  Google Scholar

[2]

D. de FigueiredoM. Girardi and M. Matzeu, Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques, Diff. Integral Equ., 17 (2004), 119-126.   Google Scholar

[3]

L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Series in Mathematical Analysis and Applications 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. doi: MR2168068.  Google Scholar

[4]

L. Gasinski and N. S. Papageorgiou, Positive solutions for nonlinear elliptic problems with dependence on the gradient, J. Differential Equations, 263 (2017), 1451-1476.  doi: 10.1016/j.jde.2017.03.021.  Google Scholar

[5]

M. Girardi and M. Matzeu, Positive and negative solutions of a quasilinear elliptic equation by a mountain pass method and truncature techniques, Nonlinear Anal., 59 (2004), 199-210.  doi: 10.1016/j.na.2004.04.014.  Google Scholar

[6]

N. B. HuyB. T. Quan and N. H. Khanh, Existence and multiplicity results for generalized logistic equations, Nonlinear Anal., 144 (2016), 77-92.  doi: 10.1016/j.na.2016.06.001.  Google Scholar

[7]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[8]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014. doi: 10.1007/978-1-4614-9323-5.  Google Scholar

[9]

D. Mugnai and N. S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 11 (2012), 729-788.  doi: 10.2422/2036-2145.201012_003.  Google Scholar

[10]

N. S. Papageorgiou and V. D. Radulescu, Multiple solutions with precise sign information for nonlinear Robin problems, J. Differential Equations, 256 (2014), 2449-2479.  doi: 10.1016/j.jde.2014.01.010.  Google Scholar

[11]

N. S. Papageorgiou and V. D. Radulescu, Nonlinear, nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear Stud., 16 (2016), 737-764.  doi: 10.1515/ans-2016-0023.  Google Scholar

[12]

N. S. Papageorgiou, V. D. Radulescu and D. D. Repovs, Nonlinear elliptic inclusions with unilateral constraint and dependence on the gradient, Appl. Math. Optim., (2016), 1-23. doi: 10.1007/s00245-016-9392-y.  Google Scholar

[13]

D. Ruiz, A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Differential Equations, 199 (2004), 96-114.  doi: 10.1016/j.jde.2003.10.021.  Google Scholar

[1]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[2]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[3]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

[4]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[5]

Kiyoshi Igusa, Gordana Todorov. Picture groups and maximal green sequences. Electronic Research Archive, , () : -. doi: 10.3934/era.2021025

[6]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[7]

Zhigang Pan, Yiqiu Mao, Quan Wang, Yuchen Yang. Transitions and bifurcations of Darcy-Brinkman-Marangoni convection. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021106

[8]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[9]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

[10]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[11]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[12]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[13]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[14]

Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Jamille L.L. Almeida. Dynamics of piezoelectric beams with magnetic effects and delay term. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021015

[15]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390

[16]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[17]

Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021011

[18]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[19]

Francesca Bucci. Improved boundary regularity for a Stokes-Lamé system. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021018

[20]

Leon Mons. Partial regularity for parabolic systems with VMO-coefficients. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021041

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (118)
  • HTML views (108)
  • Cited by (2)

[Back to Top]