April  2019, 12(2): 287-295. doi: 10.3934/dcdss.2019020

Robin problems for the p-Laplacian with gradient dependence

1. 

Dipartimento di Matematica, Università di Bari, Via E. Orabona 4, 70125 Bari, Italy

2. 

Dipartimento di Scienze Ecologiche e Biologiche (DEB), Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy

3. 

Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece

* Corresponding author: Dimitri Mugnai

Dedicated to Vicentiu, on the occasion of his 60th birthday, with sincere friendship and esteem

Received  June 2017 Revised  November 2017 Published  August 2018

Fund Project: The first author is member of the INDAM Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA). Her research is supported by the 2017 INdAM-GNAMPA Project Comportamento asintotico e controllo di equazioni di evoluzione non lineari. The second author is member of the INDAM Gruppo Nazionale per l'Analisi Matematica, la Probabilità a e le loro Applicazioni (GNAMPA). His research is supported by the 2017 INdAM-GNAMPA Project Equazioni Differenziali Non Lineari and by the M.I.U.R. project Variational methods, with applications to problems in mathematical physics and geometry (2015KB9WPT 009).

We consider a nonlinear elliptic equation with Robin boundary condition driven by the p-Laplacian and with a reaction term which depends also on the gradient. By using a topological approach based on the Leray-Schauder alternative principle, we show the existence of a smooth solution.

Citation: Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020
References:
[1]

F. FaraciD. Motreanu and D. Puglisi, Positive solutions of quasi-linear elliptic equations with dependence on the gradient, Calc. Var., 54 (2015), 525-538.  doi: 10.1007/s00526-014-0793-y.  Google Scholar

[2]

D. de FigueiredoM. Girardi and M. Matzeu, Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques, Diff. Integral Equ., 17 (2004), 119-126.   Google Scholar

[3]

L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Series in Mathematical Analysis and Applications 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. doi: MR2168068.  Google Scholar

[4]

L. Gasinski and N. S. Papageorgiou, Positive solutions for nonlinear elliptic problems with dependence on the gradient, J. Differential Equations, 263 (2017), 1451-1476.  doi: 10.1016/j.jde.2017.03.021.  Google Scholar

[5]

M. Girardi and M. Matzeu, Positive and negative solutions of a quasilinear elliptic equation by a mountain pass method and truncature techniques, Nonlinear Anal., 59 (2004), 199-210.  doi: 10.1016/j.na.2004.04.014.  Google Scholar

[6]

N. B. HuyB. T. Quan and N. H. Khanh, Existence and multiplicity results for generalized logistic equations, Nonlinear Anal., 144 (2016), 77-92.  doi: 10.1016/j.na.2016.06.001.  Google Scholar

[7]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[8]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014. doi: 10.1007/978-1-4614-9323-5.  Google Scholar

[9]

D. Mugnai and N. S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 11 (2012), 729-788.  doi: 10.2422/2036-2145.201012_003.  Google Scholar

[10]

N. S. Papageorgiou and V. D. Radulescu, Multiple solutions with precise sign information for nonlinear Robin problems, J. Differential Equations, 256 (2014), 2449-2479.  doi: 10.1016/j.jde.2014.01.010.  Google Scholar

[11]

N. S. Papageorgiou and V. D. Radulescu, Nonlinear, nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear Stud., 16 (2016), 737-764.  doi: 10.1515/ans-2016-0023.  Google Scholar

[12]

N. S. Papageorgiou, V. D. Radulescu and D. D. Repovs, Nonlinear elliptic inclusions with unilateral constraint and dependence on the gradient, Appl. Math. Optim., (2016), 1-23. doi: 10.1007/s00245-016-9392-y.  Google Scholar

[13]

D. Ruiz, A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Differential Equations, 199 (2004), 96-114.  doi: 10.1016/j.jde.2003.10.021.  Google Scholar

show all references

References:
[1]

F. FaraciD. Motreanu and D. Puglisi, Positive solutions of quasi-linear elliptic equations with dependence on the gradient, Calc. Var., 54 (2015), 525-538.  doi: 10.1007/s00526-014-0793-y.  Google Scholar

[2]

D. de FigueiredoM. Girardi and M. Matzeu, Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques, Diff. Integral Equ., 17 (2004), 119-126.   Google Scholar

[3]

L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Series in Mathematical Analysis and Applications 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. doi: MR2168068.  Google Scholar

[4]

L. Gasinski and N. S. Papageorgiou, Positive solutions for nonlinear elliptic problems with dependence on the gradient, J. Differential Equations, 263 (2017), 1451-1476.  doi: 10.1016/j.jde.2017.03.021.  Google Scholar

[5]

M. Girardi and M. Matzeu, Positive and negative solutions of a quasilinear elliptic equation by a mountain pass method and truncature techniques, Nonlinear Anal., 59 (2004), 199-210.  doi: 10.1016/j.na.2004.04.014.  Google Scholar

[6]

N. B. HuyB. T. Quan and N. H. Khanh, Existence and multiplicity results for generalized logistic equations, Nonlinear Anal., 144 (2016), 77-92.  doi: 10.1016/j.na.2016.06.001.  Google Scholar

[7]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[8]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014. doi: 10.1007/978-1-4614-9323-5.  Google Scholar

[9]

D. Mugnai and N. S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 11 (2012), 729-788.  doi: 10.2422/2036-2145.201012_003.  Google Scholar

[10]

N. S. Papageorgiou and V. D. Radulescu, Multiple solutions with precise sign information for nonlinear Robin problems, J. Differential Equations, 256 (2014), 2449-2479.  doi: 10.1016/j.jde.2014.01.010.  Google Scholar

[11]

N. S. Papageorgiou and V. D. Radulescu, Nonlinear, nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear Stud., 16 (2016), 737-764.  doi: 10.1515/ans-2016-0023.  Google Scholar

[12]

N. S. Papageorgiou, V. D. Radulescu and D. D. Repovs, Nonlinear elliptic inclusions with unilateral constraint and dependence on the gradient, Appl. Math. Optim., (2016), 1-23. doi: 10.1007/s00245-016-9392-y.  Google Scholar

[13]

D. Ruiz, A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Differential Equations, 199 (2004), 96-114.  doi: 10.1016/j.jde.2003.10.021.  Google Scholar

[1]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[2]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[3]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[4]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[5]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[6]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[7]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[8]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[9]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[10]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[11]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[12]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[13]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[14]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[15]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[16]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[17]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[18]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[19]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[20]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (105)
  • HTML views (107)
  • Cited by (2)

[Back to Top]