We study the system
$\left\{\begin{split}-\Delta u+u&=(I_\alpha*|u|^p)|u|^{p-2}u+K(x) \phi |u|^{q-2}u & \qquad \mbox{ in }\mathbb{R}^N,\\-\Delta \phi&=K(x)|u|^q& \qquad \mbox{ in }\mathbb{R}^N,\end{split}\right.$
where $N≥ 3$, $α∈ (0,N)$, $p,q>1$ and $K≥ 0$. Using a Pohozaev type identity we first derive conditions in terms of $p,q,N,α$ and $K$ for which no solutions exist. Next, we discuss the existence of a ground state solution by using a variational approach.
Citation: |
C. O. Alves
, G. M. Figueiredo
and M. Yang
, Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity, Advances in Nonlinear Analysis, 5 (2016)
, 331-345.
doi: 10.1515/anona-2015-0123.![]() ![]() ![]() |
|
W. Bao
, N. J. Mauser
and H. P. Stimming
, Effective one particle quantum dynamics of electrons: a numerical study of the Schrödinger-Poisson-$X_α$ model, Commun. Math. Sci., 1 (2003)
, 809-828.
doi: 10.4310/CMS.2003.v1.n4.a8.![]() ![]() ![]() |
|
V. Benci
and D. Fortunato
, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods, Nonlinear Anal., 11 (1998)
, 283-293.
doi: 10.12775/TMNA.1998.019.![]() ![]() ![]() |
|
V. Bogachev, Measure Theory, Springer, Berlin, 2007.
doi: 10.1007/978-3-540-34514-5.![]() ![]() ![]() |
|
O. Bokanowski
, J. L. López
and J. Soler
, On an exchange interaction model for quantum transport: The Schrödinger-Poisson-Slater system, Math. Models Methods Appl. Sci., 13 (2003)
, 1397-1412.
doi: 10.1142/S0218202503002969.![]() ![]() ![]() |
|
H. Brézis
and E. H. Lieb
, A relation between pointwise convergence of functions and convergence of functional, Proc. Amer. Math. Soc., 88 (1983)
, 486-490.
doi: 10.2307/2044999.![]() ![]() ![]() |
|
I. Catto
, J. Dolbeault
, O. Sánchez
and J. Soler
, Existence of steady states for the Maxwell-Schrödinger-Poisson system: exploring the applicability of the concentration-compactness principle, Math. Models Methods Appl. Sci., 23 (2013)
, 1915-1938.
doi: 10.1142/S0218202513500541.![]() ![]() ![]() |
|
G. Cerami
and R. Molle
, Positive bound state solutions for some Schrödinger-Poisson systems, Nonlinearity, 29 (2016)
, 3103-3119.
doi: 10.1088/0951-7715/29/10/3103.![]() ![]() ![]() |
|
G. Cerami
and G. Vaira
, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010)
, 521-543.
doi: 10.1016/j.jde.2009.06.017.![]() ![]() ![]() |
|
Y.-H. Chen
and C. Liu
, Ground state solutions for non-autonomous fractional Choquard equations, Nonlinearity, 29 (2016)
, 1827-1842.
doi: 10.1088/0951-7715/29/6/1827.![]() ![]() ![]() |
|
P. D'Avenia
, G. Siciliano
and M. Squassina
, On fractional Choquard equations, Math. Models Methods Appl. Sci., 25 (2015)
, 1447-1476.
doi: 10.1142/S0218202515500384.![]() ![]() ![]() |
|
J. T. Devreese and A. S. Alexandrov, Advances in Polaron Physics, Springer Series in SolidState Sciences, Springer, 159 (2010).
![]() |
|
M. Ghergu
and S. D. Taliaferro
, Pointwise bounds and blow-up for Choquard-Pekar inequalities at an isolated singularity, J. Differential Equations, 261 (2016)
, 189-217.
doi: 10.1016/j.jde.2016.03.004.![]() ![]() ![]() |
|
K. R. W. Jones
, Newtonian quantum gravity, Australian J. Phys., 48 (1995)
, 1055-1081.
doi: 10.1071/PH951055.![]() ![]() |
|
C. Le Bris
and P.-L. Lions
, From atoms to crystals: A mathematical journey, Bull. Amer. Math. Soc. (N.S.), 42 (2005)
, 291-363.
doi: 10.1090/S0273-0979-05-01059-1.![]() ![]() ![]() |
|
E. H. Lieb
, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies Appl. Math., 57 (1976/77)
, 93-105.
![]() ![]() |
|
P.-L. Lions
, The Choquard equation and related questions, Nonlinear Anal., 4 (1980)
, 1063-1072.
doi: 10.1016/0362-546X(80)90016-4.![]() ![]() ![]() |
|
P.-L. Lions
, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984)
, 223-283.
doi: 10.1016/S0294-1449(16)30422-X.![]() ![]() ![]() |
|
L. Ma
and L. Zhao
, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010)
, 455-467.
doi: 10.1007/s00205-008-0208-3.![]() ![]() ![]() |
|
N. J. Mauser
, The Schrödinger-Poisson-$X_α$ equation, Appl. Math. Lett., 14 (2001)
, 759-763.
doi: 10.1016/S0893-9659(01)80038-0.![]() ![]() ![]() |
|
C. Mercuri, V. Moroz and J. Van Schaftingen, Groundstates and radial solutions to nonlinear
Schrödinger-Poisson-Slater equations at critical frequency, Calculus of Variations and Partial
Differential Equations, 55 (2016), p146, arXiv: 1507.02837
doi: 10.1007/s00526-016-1079-3.![]() ![]() |
|
I. M. Moroz
, R. Penrose
and P. Tod
, Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical Quantum Gravity, 15 (1998)
, 2733-2742.
doi: 10.1088/0264-9381/15/9/019.![]() ![]() ![]() |
|
V. Moroz
and J. Van Schaftingen
, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013)
, 153-184.
doi: 10.1016/j.jfa.2013.04.007.![]() ![]() ![]() |
|
S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.
![]() |
|
R. Penrose
, On gravity's role in quantum state reduction, General Relativity and Gravitation, 28 (1996)
, 581-600.
doi: 10.1007/BF02105068.![]() ![]() ![]() |
|
G. Singh, Nonlocal perturbations of the fractional Choquard equation,
Adv. Nonlinear Anal., (2017), in press.
doi: 10.1515/anona-2017-0126.![]() ![]() |
|
J. Slater
, A Simplification of the Hartree-Fock Method, Phys. Rev., 81 (1951)
, 385-390.
doi: 10.1016/B978-0-08-017819-6.50031-9.![]() ![]() |
|
J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equations,
J. Math. Phys., 50 (2009), 012905, 22pp.
doi: 10.1063/1.3060169.![]() ![]() ![]() |
|
M. Willem,
Functional Analysis: Fundamentals and Applications, Cornerstones, vol. XIV, Birkhäuser, Basel, 2013.
doi: 10.1007/978-1-4614-7004-5.![]() ![]() ![]() |