Article Contents
Article Contents

# Existence and stabilization results for a singular parabolic equation involving the fractional Laplacian

• * Corresponding author: Jacques Giacomoni
• In this article, we study the following parabolic equation involving the fractional Laplacian with singular nonlinearity

$\begin{equation*} \quad (P_{t}^s) \left\{\begin{split} \quad u_t + (-\Delta)^s u & = u^{-q} + f(x,u), \;u >0\; \text{in}\;(0,T) \times \Omega, \\ u & = 0 \; \mbox{in}\; (0,T) \times (\mathbb{R}^n \setminus \Omega ),\\ \quad \quad \quad \quad u(0,x)& = u_0(x) \; \mbox{in} \; {\mathbb{R}^n},\end{split}\quad \right.\end{equation*}$

where $\Omega$ is a bounded domain in $\mathbb{R}^n$ with smooth boundary $\partial \Omega$, $n> 2s, \;s ∈ (0,1)$, $q>0$, ${q(2s-1)<(2s+1)}$, $u_0 ∈ L^∞(\Omega )\cap X_0(\Omega )$ and $T>0$. We suppose that the map $(x,y)∈ \Omega × \mathbb{R}^+ \mapsto f(x,y)$ is a bounded from below Carathéodary function, locally Lipschitz with respect to the second variable and uniformly for $x ∈ \Omega$ and it satisfies

$$$\label{cond_on_f}{ \limsup\limits_{y \to +\infty} \frac{f(x,y)}{y}<\lambda_1^s(\Omega)},$$$

where $\lambda_1^s(\Omega )$ is the first eigenvalue of $(-\Delta )^s$ in $\Omega$ with homogeneous Dirichlet boundary condition in $\mathbb{R}^n \setminus \Omega$. We prove the existence and uniqueness of a weak solution to $(P_t^s)$ on assuming $u_0$ satisfies an appropriate cone condition. We use the semi-discretization in time with implicit Euler method and study the stationary problem to prove our results.We also show additional regularity on the solution of $(P_t^s)$ when we regularize our initial function $u_0$.

Mathematics Subject Classification: Primary: 35J35, 35J60; Secondary: 35J92.

 Citation:

•  B. Abdellaoui , M. Medina , I. Peral  and  A. Primo , Optimal results for the fractional heat equation involving the hardy potential, Nonlinear Anal., 140 (2016) , 166-207.  doi: 10.1016/j.na.2016.03.013. Adimurthi, J. Giacomoni and S. Santra, Positive solutions to a fractional equation with singular nonlinearity, J. Differential Equations, 265 (2018), 1191-1226, arXiv: 1706.01965 doi: 10.1016/j.jde.2018.03.023. N. Alibaud  and  C. Imbert , Fractional semi-linear parabolic equations with unbounded data, Transactions of the American Mathematical Society, 361 (2009) , 2527-2566.  doi: 10.1090/S0002-9947-08-04758-2. S. Amghibech , On the discrete version of picone's identity, Discrete Applied Mathematics, 156 (2008) , 1-10.  doi: 10.1016/j.dam.2007.05.013. B. Avelin , U. Gianazza  and  S. Salsa , Boundary estimates for certain degenerate and singular parabolic equations, Journal of the European Mathematical Society, 18 (2016) , 381-424.  doi: 10.4171/JEMS/593. M. Badra , K. Bal  and  J. Giacomoni , A singular parabolic equation: Existence, stabilization, J. Differential Equations, 252 (2012) , 5042-5075.  doi: 10.1016/j.jde.2012.01.035. V. Barbu, Nonlinear Differential Equations of Monotone types in Banach Spaces, $1^{st}$ edition, Springer Monogr. Math., Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5. B. Barrios , I. De Bonis , M. Medina  and  I. Peral , Semilinear problems for the fractional laplacian with a singular nonlinearity, Open Math., 13 (2015) , 390-407.  doi: 10.1515/math-2015-0038. B. Bougherara  and  J. Giacomoni , Existence of mild solutions for a singular parabolic equation and stabilization, Adv. Nonlinear Anal., 4 (2015) , 123-134.  doi: 10.1515/anona-2015-0002. L. Cafarelli  and  A. Figalli , Regularity of solutions to the parabolic fractional obstacle problem, Journal für die reine und angewandte Mathematik (Crelles Journal), 680 (2013) , 191-233.  doi: 10.1515/crelle.2012.036. J. Dávila  and  M. Montenegro , Existence and asymptotic behavior for a singular parabolic equation, Transactions of the American Mathematical Society, 357 (2005) , 1801-1828.  doi: 10.1090/S0002-9947-04-03811-5. L. M. Del Pezzo  and  A. J. Quaas , Non-resonant fredholm alternative and anti-maximum principle for the fractional $p$-Laplacian, Journal of Fixed Point Theory and Applications, 19 (2017) , 939-958.  doi: 10.1007/s11784-017-0405-5. A. Fino  and  G. Karch , Decay of mass for nonlinear equation with fractional laplacian, Monatshefte für Mathematik, 160 (2010) , 375-384.  doi: 10.1007/s00605-009-0093-3. G. Fragnelli  and  D. Mugnai , Carleman estimates for singular parabolic equations with interior degeneracy and non-smooth coefficients, Adv. Nonlinear Anal., 6 (2017) , 61-84.  doi: 10.1515/anona-2015-0163. R. L. Frank  and  R. Seiringer , Non-linear ground state representations and sharp hardy inequalities, Journal of Functional Analysis, 255 (2008) , 3407-3430.  doi: 10.1016/j.jfa.2008.05.015. J. Giacomoni , T. Mukherjee  and  K. Sreenadh , Positive solutions of fractional elliptic equation with critical and singular nonlinearity, Adv. Nonlinear Anal., 6 (2016) , 327-354.  doi: 10.1515/anona-2016-0113. S. Kim  and  K.-A. Lee , Hölder estimates for singular non-local parabolic equations, Journal of Functional Analysis, 261 (2011) , 3482-3518.  doi: 10.1016/j.jfa.2011.08.010. T. Leonori , I. Peral , A. Primo  and  F. Soria , Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015) , 6031-6068.  doi: 10.3934/dcds.2015.35.6031. T. Mukherjee  and  K. Sreenadh , Fractional elliptic equations with critical growth and singular nonlinearities, Electronic Journal of Differential Equations, 54 (2016) , 1-23. X. Ros-Oton  and  J. Serra , The dirichlet problem for the fractional laplacian: Regularity up to the boundary, Journal de Mathématiques Pures et Appliquées, 101 (2014) , 275-302.  doi: 10.1016/j.matpur.2013.06.003. R. Servadei  and  E. Valdinoci , The Brezis-Nirenberg result for the fractional laplacian, Transactions of the American Mathematical Society, 367 (2015) , 67-102.  doi: 10.1090/S0002-9947-2014-05884-4. R. Servadei  and  E. Valdinoci , Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013) , 2105-2137. L. Silvestre , Regularity of the obstacle problem for a fractional power of the laplace operator, Comm. Pure Appl. Math., 60 (2007) , 67-112.  doi: 10.1002/cpa.20153. J. Simon , Compact sets in the space $L^p(0, T ; B)$, Ann. Mat. Pura Appl., 146 (1987) , 65-96.  doi: 10.1007/BF01762360. J. L. Vázquez, Nonlinear diffusion with fractional Laplacian operators, Nonlinear Partial Differential Equations, Holden, Helge and Karlsen, Kenneth H. eds., Springer, 7 (2012), 271-298. doi: 10.1007/978-3-642-25361-4_15. J. L. Vázquez , Recent progress in the theory of nonlinear diffusion with fractional laplacian operators, Discrete and Continuous Dynamical Systems - Series S, 7 (2014) , 857-885.  doi: 10.3934/dcdss.2014.7.857.