In this article, we study the following parabolic equation involving the fractional Laplacian with singular nonlinearity
$\begin{equation*} \quad (P_{t}^s) \left\{\begin{split} \quad u_t + (-\Delta)^s u & = u^{-q} + f(x,u), \;u >0\; \text{in}\;(0,T) \times \Omega, \\ u & = 0 \; \mbox{in}\; (0,T) \times (\mathbb{R}^n \setminus \Omega ),\\ \quad \quad \quad \quad u(0,x)& = u_0(x) \; \mbox{in} \; {\mathbb{R}^n},\end{split}\quad \right.\end{equation*}$
where
$ \begin{equation}\label{cond_on_f}{ \limsup\limits_{y \to +\infty} \frac{f(x,y)}{y}<\lambda_1^s(\Omega)}, \end{equation}$
where
Citation: |
B. Abdellaoui
, M. Medina
, I. Peral
and A. Primo
, Optimal results for the fractional heat equation involving the hardy potential, Nonlinear Anal., 140 (2016)
, 166-207.
doi: 10.1016/j.na.2016.03.013.![]() ![]() ![]() |
|
Adimurthi, J. Giacomoni and S. Santra, Positive solutions to a fractional equation with singular nonlinearity, J. Differential Equations, 265 (2018), 1191-1226, arXiv: 1706.01965
doi: 10.1016/j.jde.2018.03.023.![]() ![]() ![]() |
|
N. Alibaud
and C. Imbert
, Fractional semi-linear parabolic equations with unbounded data, Transactions of the American Mathematical Society, 361 (2009)
, 2527-2566.
doi: 10.1090/S0002-9947-08-04758-2.![]() ![]() ![]() |
|
S. Amghibech
, On the discrete version of picone's identity, Discrete Applied Mathematics, 156 (2008)
, 1-10.
doi: 10.1016/j.dam.2007.05.013.![]() ![]() ![]() |
|
B. Avelin
, U. Gianazza
and S. Salsa
, Boundary estimates for certain degenerate and singular parabolic equations, Journal of the European Mathematical Society, 18 (2016)
, 381-424.
doi: 10.4171/JEMS/593.![]() ![]() ![]() |
|
M. Badra
, K. Bal
and J. Giacomoni
, A singular parabolic equation: Existence, stabilization, J. Differential Equations, 252 (2012)
, 5042-5075.
doi: 10.1016/j.jde.2012.01.035.![]() ![]() ![]() |
|
V. Barbu,
Nonlinear Differential Equations of Monotone types in Banach Spaces,
$1^{st}$ edition, Springer Monogr. Math., Springer, New York, 2010.
doi: 10.1007/978-1-4419-5542-5.![]() ![]() ![]() |
|
B. Barrios
, I. De Bonis
, M. Medina
and I. Peral
, Semilinear problems for the fractional laplacian with a singular nonlinearity, Open Math., 13 (2015)
, 390-407.
doi: 10.1515/math-2015-0038.![]() ![]() ![]() |
|
B. Bougherara
and J. Giacomoni
, Existence of mild solutions for a singular parabolic equation and stabilization, Adv. Nonlinear Anal., 4 (2015)
, 123-134.
doi: 10.1515/anona-2015-0002.![]() ![]() ![]() |
|
L. Cafarelli
and A. Figalli
, Regularity of solutions to the parabolic fractional obstacle problem, Journal für die reine und angewandte Mathematik (Crelles Journal), 680 (2013)
, 191-233.
doi: 10.1515/crelle.2012.036.![]() ![]() ![]() |
|
J. Dávila
and M. Montenegro
, Existence and asymptotic behavior for a singular parabolic equation, Transactions of the American Mathematical Society, 357 (2005)
, 1801-1828.
doi: 10.1090/S0002-9947-04-03811-5.![]() ![]() ![]() |
|
L. M. Del Pezzo
and A. J. Quaas
, Non-resonant fredholm alternative and anti-maximum principle for the fractional $p$-Laplacian, Journal of Fixed Point Theory and Applications, 19 (2017)
, 939-958.
doi: 10.1007/s11784-017-0405-5.![]() ![]() ![]() |
|
A. Fino
and G. Karch
, Decay of mass for nonlinear equation with fractional laplacian, Monatshefte für Mathematik, 160 (2010)
, 375-384.
doi: 10.1007/s00605-009-0093-3.![]() ![]() ![]() |
|
G. Fragnelli
and D. Mugnai
, Carleman estimates for singular parabolic equations with interior degeneracy and non-smooth coefficients, Adv. Nonlinear Anal., 6 (2017)
, 61-84.
doi: 10.1515/anona-2015-0163.![]() ![]() ![]() |
|
R. L. Frank
and R. Seiringer
, Non-linear ground state representations and sharp hardy inequalities, Journal of Functional Analysis, 255 (2008)
, 3407-3430.
doi: 10.1016/j.jfa.2008.05.015.![]() ![]() ![]() |
|
J. Giacomoni
, T. Mukherjee
and K. Sreenadh
, Positive solutions of fractional elliptic equation with critical and singular nonlinearity, Adv. Nonlinear Anal., 6 (2016)
, 327-354.
doi: 10.1515/anona-2016-0113.![]() ![]() ![]() |
|
S. Kim
and K.-A. Lee
, Hölder estimates for singular non-local parabolic equations, Journal of Functional Analysis, 261 (2011)
, 3482-3518.
doi: 10.1016/j.jfa.2011.08.010.![]() ![]() ![]() |
|
T. Leonori
, I. Peral
, A. Primo
and F. Soria
, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015)
, 6031-6068.
doi: 10.3934/dcds.2015.35.6031.![]() ![]() ![]() |
|
T. Mukherjee
and K. Sreenadh
, Fractional elliptic equations with critical growth and singular nonlinearities, Electronic Journal of Differential Equations, 54 (2016)
, 1-23.
![]() ![]() |
|
X. Ros-Oton
and J. Serra
, The dirichlet problem for the fractional laplacian: Regularity up to the boundary, Journal de Mathématiques Pures et Appliquées, 101 (2014)
, 275-302.
doi: 10.1016/j.matpur.2013.06.003.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, The Brezis-Nirenberg result for the fractional laplacian, Transactions of the American Mathematical Society, 367 (2015)
, 67-102.
doi: 10.1090/S0002-9947-2014-05884-4.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013)
, 2105-2137.
![]() ![]() |
|
L. Silvestre
, Regularity of the obstacle problem for a fractional power of the laplace operator, Comm. Pure Appl. Math., 60 (2007)
, 67-112.
doi: 10.1002/cpa.20153.![]() ![]() ![]() |
|
J. Simon
, Compact sets in the space $L^p(0, T ; B)$, Ann. Mat. Pura Appl., 146 (1987)
, 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
|
J. L. Vázquez, Nonlinear diffusion with fractional Laplacian operators, Nonlinear Partial Differential Equations, Holden, Helge and Karlsen, Kenneth H. eds., Springer, 7 (2012), 271-298.
doi: 10.1007/978-3-642-25361-4_15.![]() ![]() ![]() |
|
J. L. Vázquez
, Recent progress in the theory of nonlinear diffusion with fractional laplacian operators, Discrete and Continuous Dynamical Systems - Series S, 7 (2014)
, 857-885.
doi: 10.3934/dcdss.2014.7.857.![]() ![]() ![]() |