April  2019, 12(2): 311-337. doi: 10.3934/dcdss.2019022

Existence and stabilization results for a singular parabolic equation involving the fractional Laplacian

1. 

Université de Pau et des Pays de l'Adour, CNRS, E2S, LMAP UMR 5142, avenue de l'université, 64013 Pau cedex, France

2. 

Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India

* Corresponding author: Jacques Giacomoni

Received  April 2017 Revised  January 2018 Published  August 2018

In this article, we study the following parabolic equation involving the fractional Laplacian with singular nonlinearity
$\begin{equation*} \quad (P_{t}^s) \left\{\begin{split} \quad u_t + (-\Delta)^s u & = u^{-q} + f(x,u), \;u >0\; \text{in}\;(0,T) \times \Omega, \\ u & = 0 \; \mbox{in}\; (0,T) \times (\mathbb{R}^n \setminus \Omega ),\\ \quad \quad \quad \quad u(0,x)& = u_0(x) \; \mbox{in} \; {\mathbb{R}^n},\end{split}\quad \right.\end{equation*}$
where
$\Omega $
is a bounded domain in
$\mathbb{R}^n$
with smooth boundary
$\partial \Omega $
,
$n> 2s, \;s ∈ (0,1)$
,
$q>0$
,
${q(2s-1)<(2s+1)}$
,
$u_0 ∈ L^∞(\Omega )\cap X_0(\Omega )$
and
$T>0$
. We suppose that the map
$(x,y)∈ \Omega × \mathbb{R}^+ \mapsto f(x,y)$
is a bounded from below Carathéodary function, locally Lipschitz with respect to the second variable and uniformly for
$x ∈ \Omega $
and it satisfies
$ \begin{equation}\label{cond_on_f}{ \limsup\limits_{y \to +\infty} \frac{f(x,y)}{y}<\lambda_1^s(\Omega)}, \end{equation}$
where
$\lambda_1^s(\Omega )$
is the first eigenvalue of
$(-\Delta )^s$
in
$\Omega $
with homogeneous Dirichlet boundary condition in
$\mathbb{R}^n \setminus \Omega $
. We prove the existence and uniqueness of a weak solution to
$(P_t^s)$
on assuming
$u_0$
satisfies an appropriate cone condition. We use the semi-discretization in time with implicit Euler method and study the stationary problem to prove our results.We also show additional regularity on the solution of
$(P_t^s)$
when we regularize our initial function
$u_0$
.
Citation: Jacques Giacomoni, Tuhina Mukherjee, Konijeti Sreenadh. Existence and stabilization results for a singular parabolic equation involving the fractional Laplacian. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 311-337. doi: 10.3934/dcdss.2019022
References:
[1]

B. AbdellaouiM. MedinaI. Peral and A. Primo, Optimal results for the fractional heat equation involving the hardy potential, Nonlinear Anal., 140 (2016), 166-207.  doi: 10.1016/j.na.2016.03.013.

[2]

Adimurthi, J. Giacomoni and S. Santra, Positive solutions to a fractional equation with singular nonlinearity, J. Differential Equations, 265 (2018), 1191-1226, arXiv: 1706.01965 doi: 10.1016/j.jde.2018.03.023.

[3]

N. Alibaud and C. Imbert, Fractional semi-linear parabolic equations with unbounded data, Transactions of the American Mathematical Society, 361 (2009), 2527-2566.  doi: 10.1090/S0002-9947-08-04758-2.

[4]

S. Amghibech, On the discrete version of picone's identity, Discrete Applied Mathematics, 156 (2008), 1-10.  doi: 10.1016/j.dam.2007.05.013.

[5]

B. AvelinU. Gianazza and S. Salsa, Boundary estimates for certain degenerate and singular parabolic equations, Journal of the European Mathematical Society, 18 (2016), 381-424.  doi: 10.4171/JEMS/593.

[6]

M. BadraK. Bal and J. Giacomoni, A singular parabolic equation: Existence, stabilization, J. Differential Equations, 252 (2012), 5042-5075.  doi: 10.1016/j.jde.2012.01.035.

[7]

V. Barbu, Nonlinear Differential Equations of Monotone types in Banach Spaces, $1^{st}$ edition, Springer Monogr. Math., Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.

[8]

B. BarriosI. De BonisM. Medina and I. Peral, Semilinear problems for the fractional laplacian with a singular nonlinearity, Open Math., 13 (2015), 390-407.  doi: 10.1515/math-2015-0038.

[9]

B. Bougherara and J. Giacomoni, Existence of mild solutions for a singular parabolic equation and stabilization, Adv. Nonlinear Anal., 4 (2015), 123-134.  doi: 10.1515/anona-2015-0002.

[10]

L. Cafarelli and A. Figalli, Regularity of solutions to the parabolic fractional obstacle problem, Journal für die reine und angewandte Mathematik (Crelles Journal), 680 (2013), 191-233.  doi: 10.1515/crelle.2012.036.

[11]

J. Dávila and M. Montenegro, Existence and asymptotic behavior for a singular parabolic equation, Transactions of the American Mathematical Society, 357 (2005), 1801-1828.  doi: 10.1090/S0002-9947-04-03811-5.

[12]

L. M. Del Pezzo and A. J. Quaas, Non-resonant fredholm alternative and anti-maximum principle for the fractional $p$-Laplacian, Journal of Fixed Point Theory and Applications, 19 (2017), 939-958.  doi: 10.1007/s11784-017-0405-5.

[13]

A. Fino and G. Karch, Decay of mass for nonlinear equation with fractional laplacian, Monatshefte für Mathematik, 160 (2010), 375-384.  doi: 10.1007/s00605-009-0093-3.

[14]

G. Fragnelli and D. Mugnai, Carleman estimates for singular parabolic equations with interior degeneracy and non-smooth coefficients, Adv. Nonlinear Anal., 6 (2017), 61-84.  doi: 10.1515/anona-2015-0163.

[15]

R. L. Frank and R. Seiringer, Non-linear ground state representations and sharp hardy inequalities, Journal of Functional Analysis, 255 (2008), 3407-3430.  doi: 10.1016/j.jfa.2008.05.015.

[16]

J. GiacomoniT. Mukherjee and K. Sreenadh, Positive solutions of fractional elliptic equation with critical and singular nonlinearity, Adv. Nonlinear Anal., 6 (2016), 327-354.  doi: 10.1515/anona-2016-0113.

[17]

S. Kim and K.-A. Lee, Hölder estimates for singular non-local parabolic equations, Journal of Functional Analysis, 261 (2011), 3482-3518.  doi: 10.1016/j.jfa.2011.08.010.

[18]

T. LeonoriI. PeralA. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031-6068.  doi: 10.3934/dcds.2015.35.6031.

[19]

T. Mukherjee and K. Sreenadh, Fractional elliptic equations with critical growth and singular nonlinearities, Electronic Journal of Differential Equations, 54 (2016), 1-23. 

[20]

X. Ros-Oton and J. Serra, The dirichlet problem for the fractional laplacian: Regularity up to the boundary, Journal de Mathématiques Pures et Appliquées, 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.

[21]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional laplacian, Transactions of the American Mathematical Society, 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.

[22]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137. 

[23]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.

[24]

J. Simon, Compact sets in the space $L^p(0, T ; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.

[25]

J. L. Vázquez, Nonlinear diffusion with fractional Laplacian operators, Nonlinear Partial Differential Equations, Holden, Helge and Karlsen, Kenneth H. eds., Springer, 7 (2012), 271-298. doi: 10.1007/978-3-642-25361-4_15.

[26]

J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional laplacian operators, Discrete and Continuous Dynamical Systems - Series S, 7 (2014), 857-885.  doi: 10.3934/dcdss.2014.7.857.

show all references

References:
[1]

B. AbdellaouiM. MedinaI. Peral and A. Primo, Optimal results for the fractional heat equation involving the hardy potential, Nonlinear Anal., 140 (2016), 166-207.  doi: 10.1016/j.na.2016.03.013.

[2]

Adimurthi, J. Giacomoni and S. Santra, Positive solutions to a fractional equation with singular nonlinearity, J. Differential Equations, 265 (2018), 1191-1226, arXiv: 1706.01965 doi: 10.1016/j.jde.2018.03.023.

[3]

N. Alibaud and C. Imbert, Fractional semi-linear parabolic equations with unbounded data, Transactions of the American Mathematical Society, 361 (2009), 2527-2566.  doi: 10.1090/S0002-9947-08-04758-2.

[4]

S. Amghibech, On the discrete version of picone's identity, Discrete Applied Mathematics, 156 (2008), 1-10.  doi: 10.1016/j.dam.2007.05.013.

[5]

B. AvelinU. Gianazza and S. Salsa, Boundary estimates for certain degenerate and singular parabolic equations, Journal of the European Mathematical Society, 18 (2016), 381-424.  doi: 10.4171/JEMS/593.

[6]

M. BadraK. Bal and J. Giacomoni, A singular parabolic equation: Existence, stabilization, J. Differential Equations, 252 (2012), 5042-5075.  doi: 10.1016/j.jde.2012.01.035.

[7]

V. Barbu, Nonlinear Differential Equations of Monotone types in Banach Spaces, $1^{st}$ edition, Springer Monogr. Math., Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.

[8]

B. BarriosI. De BonisM. Medina and I. Peral, Semilinear problems for the fractional laplacian with a singular nonlinearity, Open Math., 13 (2015), 390-407.  doi: 10.1515/math-2015-0038.

[9]

B. Bougherara and J. Giacomoni, Existence of mild solutions for a singular parabolic equation and stabilization, Adv. Nonlinear Anal., 4 (2015), 123-134.  doi: 10.1515/anona-2015-0002.

[10]

L. Cafarelli and A. Figalli, Regularity of solutions to the parabolic fractional obstacle problem, Journal für die reine und angewandte Mathematik (Crelles Journal), 680 (2013), 191-233.  doi: 10.1515/crelle.2012.036.

[11]

J. Dávila and M. Montenegro, Existence and asymptotic behavior for a singular parabolic equation, Transactions of the American Mathematical Society, 357 (2005), 1801-1828.  doi: 10.1090/S0002-9947-04-03811-5.

[12]

L. M. Del Pezzo and A. J. Quaas, Non-resonant fredholm alternative and anti-maximum principle for the fractional $p$-Laplacian, Journal of Fixed Point Theory and Applications, 19 (2017), 939-958.  doi: 10.1007/s11784-017-0405-5.

[13]

A. Fino and G. Karch, Decay of mass for nonlinear equation with fractional laplacian, Monatshefte für Mathematik, 160 (2010), 375-384.  doi: 10.1007/s00605-009-0093-3.

[14]

G. Fragnelli and D. Mugnai, Carleman estimates for singular parabolic equations with interior degeneracy and non-smooth coefficients, Adv. Nonlinear Anal., 6 (2017), 61-84.  doi: 10.1515/anona-2015-0163.

[15]

R. L. Frank and R. Seiringer, Non-linear ground state representations and sharp hardy inequalities, Journal of Functional Analysis, 255 (2008), 3407-3430.  doi: 10.1016/j.jfa.2008.05.015.

[16]

J. GiacomoniT. Mukherjee and K. Sreenadh, Positive solutions of fractional elliptic equation with critical and singular nonlinearity, Adv. Nonlinear Anal., 6 (2016), 327-354.  doi: 10.1515/anona-2016-0113.

[17]

S. Kim and K.-A. Lee, Hölder estimates for singular non-local parabolic equations, Journal of Functional Analysis, 261 (2011), 3482-3518.  doi: 10.1016/j.jfa.2011.08.010.

[18]

T. LeonoriI. PeralA. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031-6068.  doi: 10.3934/dcds.2015.35.6031.

[19]

T. Mukherjee and K. Sreenadh, Fractional elliptic equations with critical growth and singular nonlinearities, Electronic Journal of Differential Equations, 54 (2016), 1-23. 

[20]

X. Ros-Oton and J. Serra, The dirichlet problem for the fractional laplacian: Regularity up to the boundary, Journal de Mathématiques Pures et Appliquées, 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.

[21]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional laplacian, Transactions of the American Mathematical Society, 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.

[22]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137. 

[23]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.

[24]

J. Simon, Compact sets in the space $L^p(0, T ; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.

[25]

J. L. Vázquez, Nonlinear diffusion with fractional Laplacian operators, Nonlinear Partial Differential Equations, Holden, Helge and Karlsen, Kenneth H. eds., Springer, 7 (2012), 271-298. doi: 10.1007/978-3-642-25361-4_15.

[26]

J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional laplacian operators, Discrete and Continuous Dynamical Systems - Series S, 7 (2014), 857-885.  doi: 10.3934/dcdss.2014.7.857.

[1]

Yanqin Fang, De Tang. Method of sub-super solutions for fractional elliptic equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3153-3165. doi: 10.3934/dcdsb.2017212

[2]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations and Control Theory, 2022, 11 (1) : 301-324. doi: 10.3934/eect.2021014

[3]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[4]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3387-3399. doi: 10.3934/dcdss.2021017

[5]

Yanan Li, Alexandre N. Carvalho, Tito L. M. Luna, Estefani M. Moreira. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5181-5196. doi: 10.3934/cpaa.2020232

[6]

Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks and Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002

[7]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[8]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[9]

Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71

[10]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[11]

Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475

[12]

Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701

[13]

Zhaoquan Xu, Chufen Wu. Spreading speeds for a class of non-local convolution differential equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4479-4492. doi: 10.3934/dcdsb.2020108

[14]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[15]

Wei Wan, Weihong Guo, Jun Liu, Haiyang Huang. Non-local blind hyperspectral image super-resolution via 4d sparse tensor factorization and low-rank. Inverse Problems and Imaging, 2020, 14 (2) : 339-361. doi: 10.3934/ipi.2020015

[16]

Yong-Kui Chang, Xiaojing Liu. Time-varying integro-differential inclusions with Clarke sub-differential and non-local initial conditions: existence and approximate controllability. Evolution Equations and Control Theory, 2020, 9 (3) : 845-863. doi: 10.3934/eect.2020036

[17]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[18]

Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335

[19]

Ahmad Z. Fino, Mokhtar Kirane. The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3625-3650. doi: 10.3934/cpaa.2020160

[20]

Imran H. Biswas, Indranil Chowdhury. On the differentiability of the solutions of non-local Isaacs equations involving $\frac{1}{2}$-Laplacian. Communications on Pure and Applied Analysis, 2016, 15 (3) : 907-927. doi: 10.3934/cpaa.2016.15.907

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (339)
  • HTML views (118)
  • Cited by (0)

[Back to Top]