-
Previous Article
Multiple solutions for (p, 2)-equations at resonance
- DCDS-S Home
- This Issue
-
Next Article
Existence and stabilization results for a singular parabolic equation involving the fractional Laplacian
Regularity of extremal solutions of a Liouville system
LAMFA, UMR CNRS 7352, Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex, France |
$Ω\subset\mathbb{R}^n$ |
$\begin{equation*}-Δ u = μ e^{θ u +(1-θ)v} , ~~~- Δ v = λ e^{θ v + (1-θ)u}~~~\mbox{ in }Ω,\end{equation*}$ |
$u = v = 0$ |
$\partial Ω$ |
$θ$ |
$[0,1]$ |
$μ,λ≥0$ |
$n≤ 9$ |
References:
[1] |
C. Cowan,
Regularity of the extremal solutions in a Gelfand system problem, Adv. Nonlinear Stud., 11 (2011), 695-700.
doi: 10.1515/ans-2011-0310. |
[2] |
C. Cowan and N. Ghoussoub,
Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains, Calc. Var. and PDEs, 49 (2014), 291-305.
doi: 10.1007/s00526-012-0582-4. |
[3] |
M. G. Crandall and P. H. Rabinowitz,
Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal., 58 (1975), 207-218.
doi: 10.1007/BF00280741. |
[4] |
J. Dávila, L. Dupaigne and A. Farina,
Partial regularity of finite Morse index solutions to the Lane-Emden equation, J. Funct. Anal., 261 (2011), 218-232.
doi: 10.1016/j.jfa.2010.12.028. |
[5] |
J. Dávila and O. Goubet,
Partial regularity for a Liouville system, Discrete Contin. Dyn. Syst., 34 (2014), 2495-2503.
doi: 10.3934/dcds.2014.34.2495. |
[6] |
L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 143, Chapman & Hall/CRC, Boca Raton, FL, 2011.
doi: 10.1201/b10802. |
[7] |
L. Dupaigne, A. Farina and B. Sirakov, Regularity of the extremal solution for the Liouville system, Geometric Partial Differential Equations, 139-144, CRM Series, 15, Ed. Norm., Pisa, 2013. arXiv: 1207.3703.
doi: 10.1007/978-88-7642-473-1_7. |
[8] |
L. Dupaigne, M. Ghergu, O. Goubet and G. Warnault,
The Gel'fand for the biharmonic operator, Arch. Ration. Mech. Anal., 208 (2013), 725-752.
doi: 10.1007/s00205-013-0613-0. |
[9] |
A. Farina,
On the classification of solutions of the solutions of Lane-Emden equations on unbounded domains of $\mathbb{R}^n$, J. Math. Pures et Appliquées, 87 (2007), 537-561.
doi: 10.1016/j.matpur.2007.03.001. |
[10] |
F. Mignot and J.-P. Puel,
Sur une classe de problèmes non linéaires avec non linéairité positive, croissante, convexe, Comm. Partial Differential Equations, 5 (1980), 791-836.
doi: 10.1080/03605308008820155. |
[11] |
M. Montenegro,
Minimal solutions for a class of elliptic systems, Bull. London Math. Soc., 37 (2005), 405-416.
doi: 10.1112/S0024609305004248. |
[12] |
K. Wang,
Partial regularity of stable solutions to the supercritical equations and its applications, Nonlinear Anal., 75 (2012), 5238-5260.
doi: 10.1016/j.na.2012.04.041. |
show all references
References:
[1] |
C. Cowan,
Regularity of the extremal solutions in a Gelfand system problem, Adv. Nonlinear Stud., 11 (2011), 695-700.
doi: 10.1515/ans-2011-0310. |
[2] |
C. Cowan and N. Ghoussoub,
Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains, Calc. Var. and PDEs, 49 (2014), 291-305.
doi: 10.1007/s00526-012-0582-4. |
[3] |
M. G. Crandall and P. H. Rabinowitz,
Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal., 58 (1975), 207-218.
doi: 10.1007/BF00280741. |
[4] |
J. Dávila, L. Dupaigne and A. Farina,
Partial regularity of finite Morse index solutions to the Lane-Emden equation, J. Funct. Anal., 261 (2011), 218-232.
doi: 10.1016/j.jfa.2010.12.028. |
[5] |
J. Dávila and O. Goubet,
Partial regularity for a Liouville system, Discrete Contin. Dyn. Syst., 34 (2014), 2495-2503.
doi: 10.3934/dcds.2014.34.2495. |
[6] |
L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 143, Chapman & Hall/CRC, Boca Raton, FL, 2011.
doi: 10.1201/b10802. |
[7] |
L. Dupaigne, A. Farina and B. Sirakov, Regularity of the extremal solution for the Liouville system, Geometric Partial Differential Equations, 139-144, CRM Series, 15, Ed. Norm., Pisa, 2013. arXiv: 1207.3703.
doi: 10.1007/978-88-7642-473-1_7. |
[8] |
L. Dupaigne, M. Ghergu, O. Goubet and G. Warnault,
The Gel'fand for the biharmonic operator, Arch. Ration. Mech. Anal., 208 (2013), 725-752.
doi: 10.1007/s00205-013-0613-0. |
[9] |
A. Farina,
On the classification of solutions of the solutions of Lane-Emden equations on unbounded domains of $\mathbb{R}^n$, J. Math. Pures et Appliquées, 87 (2007), 537-561.
doi: 10.1016/j.matpur.2007.03.001. |
[10] |
F. Mignot and J.-P. Puel,
Sur une classe de problèmes non linéaires avec non linéairité positive, croissante, convexe, Comm. Partial Differential Equations, 5 (1980), 791-836.
doi: 10.1080/03605308008820155. |
[11] |
M. Montenegro,
Minimal solutions for a class of elliptic systems, Bull. London Math. Soc., 37 (2005), 405-416.
doi: 10.1112/S0024609305004248. |
[12] |
K. Wang,
Partial regularity of stable solutions to the supercritical equations and its applications, Nonlinear Anal., 75 (2012), 5238-5260.
doi: 10.1016/j.na.2012.04.041. |
[1] |
Yuan Li. Extremal solution and Liouville theorem for anisotropic elliptic equations. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4063-4082. doi: 10.3934/cpaa.2021144 |
[2] |
Juan Dávila, Olivier Goubet. Partial regularity for a Liouville system. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2495-2503. doi: 10.3934/dcds.2014.34.2495 |
[3] |
Guillaume Warnault. Regularity of the extremal solution for a biharmonic problem with general nonlinearity. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1709-1723. doi: 10.3934/cpaa.2009.8.1709 |
[4] |
Zongming Guo, Juncheng Wei. Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2561-2580. doi: 10.3934/dcds.2014.34.2561 |
[5] |
Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227 |
[6] |
Juan Dávila, Louis Dupaigne, Marcelo Montenegro. The extremal solution of a boundary reaction problem. Communications on Pure and Applied Analysis, 2008, 7 (4) : 795-817. doi: 10.3934/cpaa.2008.7.795 |
[7] |
H. M. Yin. Optimal regularity of solution to a degenerate elliptic system arising in electromagnetic fields. Communications on Pure and Applied Analysis, 2002, 1 (1) : 127-134. doi: 10.3934/cpaa.2002.1.127 |
[8] |
Mostafa Fazly. Regularity of extremal solutions of nonlocal elliptic systems. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 107-131. doi: 10.3934/dcds.2020005 |
[9] |
Futoshi Takahashi. Singular extremal solutions to a Liouville-Gelfand type problem with exponential nonlinearity. Conference Publications, 2015, 2015 (special) : 1025-1033. doi: 10.3934/proc.2015.1025 |
[10] |
Craig Cowan, Pierpaolo Esposito, Nassif Ghoussoub. Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1033-1050. doi: 10.3934/dcds.2010.28.1033 |
[11] |
Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure and Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855 |
[12] |
Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial and Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591 |
[13] |
Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2637-2659. doi: 10.3934/dcds.2019110 |
[14] |
Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099 |
[15] |
Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure and Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565 |
[16] |
Mostafa Fazly, Yuan Li. Partial regularity and Liouville theorems for stable solutions of anisotropic elliptic equations. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4185-4206. doi: 10.3934/dcds.2021033 |
[17] |
Quoc Hung Phan. Optimal Liouville-type theorems for a parabolic system. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 399-409. doi: 10.3934/dcds.2015.35.399 |
[18] |
Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067 |
[19] |
Ze Cheng, Genggeng Huang. A Liouville theorem for the subcritical Lane-Emden system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1359-1377. doi: 10.3934/dcds.2019058 |
[20] |
Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]