\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multiple solutions for (p, 2)-equations at resonance

  • * Corresponding author: Nikolaos Papageorgiou

    * Corresponding author: Nikolaos Papageorgiou 
Abstract Full Text(HTML) Related Papers Cited by
  • We consider a nonlinear nonhomogeneous Dirichlet problem driven by the sum of a $p$-Laplacian and a Laplacian and a reaction term which is $(p-1)$-linear near $\pm \infty$ and resonant with respect to any nonprincipal variational eigenvalue of $(-\Delta_p,W^{1,p}_0(\Omega))$. Using variational tools together with truncation and comparison techniques and Morse Theory (critical groups), we establish the existence of six nontrivial smooth solutions. For five of them we provide sign information and order them.

    Mathematics Subject Classification: Primary: 35J20, 35J60; Secondary: 58E05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc., 196 (2008), ⅵ+70 pp. doi: 10.1090/memo/0915.
      S. Aizicovici , N. S. Papageorgiou  and  V. Staicu , On p-superlinear equations with a nonhomogeneous differential operator, NoDEA Nonlinear Differential Equations Appl., 20 (2013) , 151-175.  doi: 10.1007/s00030-012-0187-9.
      S. Aizicovici , N. S. Papageorgiou  and  V. Staicu , Nodal solutions for (p, 2)-equations, Trans. Amer. Math. Soc., 367 (2015) , 7343-7372.  doi: 10.1090/S0002-9947-2014-06324-1.
      R. Aris, Mathematical Modelling Techniques, Research Notes in Mathematics, 24. Pitman Boston, 1979.
      V. Benci , P. D'Avenia , D. Fortunato  and  L. Pisani , Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal., 154 (2000) , 297-324.  doi: 10.1007/s002050000101.
      K.-C. Chang, Infinite-dimensional Morse Theory and Multiple Solution Problems, Progress in Nonlinear Differential Equations and their Applications, 6. Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0385-8.
      K.-C. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005.
      L. Cherfils  and  Y. Il'yasov , On the stationary solutions of generalized reaction diffusion equations with p & q-Laplacian, Commun. Pure Appl. Anal., 4 (2005) , 9-22. 
      S. Cingolani  and  M. Degiovanni , Nontrivial solutions for p-Laplace equations with right-hand side having p-linear growth at infinity, Comm. Partial Differential Equations, 30 (2005) , 1191-1203.  doi: 10.1080/03605300500257594.
      J. I. Díaz  and  J. E. Saá , Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987) , 521-524. 
      P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics, 28. Springer-Verlag, Berlin, 1979.
      D. G. De Figueiredo  and  J.-P. Gossez , Strict monotonicity of eigenvalues and unique continuation, Comm. Partial Differential Equations, 17 (1992) , 339-346.  doi: 10.1080/03605309208820844.
      M. E. Filippakis  and  N. S. Papageorgiou , Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian, J. Differential Equations, 245 (2008) , 1883-1922.  doi: 10.1016/j.jde.2008.07.004.
      L. Gasiński and N. S. Papageorgiou, Nonlinear Analysis, Ser. Math. Anal. Appl., 9 Chapman and Hall/CRC Press, Boca Raton, 2006.
      L. Gasiński and N. S. Papageorgiou, Multiplicity of positive solutions for eigenvalue problems of (p, 2)-equations, Bound. Value Probl., 2012 (2012), 17 pp. doi: 10.1186/1687-2770-2012-152.
      L. Gasiński and N. S. Papageorgiou, Asymmetric (p, 2)-equations with double resonance, Calc. Var., 56 (2017), Art. 88, 23 pp. doi: 10.1007/s00526-017-1180-2.
      L. Gasiński and N. S. Papageorgiou, Exercises in Analysis. Part 2. Nonlinear Analysis, Problem Books in Mathematics. Springer, Cham, 2016. doi: 10.1007/978-3-319-27817-9.
      S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I. Theory, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997. doi: 10.1007/978-1-4615-6359-4.
      O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.
      Z. Liang, X. Han and A. Li, Some properties and applications related to the (2, p)-Laplacian operator, Bound. Value Probl., 2016 (2016), 17 pp. doi: 10.1186/s13661-016-0567-x.
      Z. Liang  and  J. Su , Multiple solutions for semilinear elliptic boundary value problems with double resonance, J. Math. Anal. Appl., 354 (2009) , 147-158.  doi: 10.1016/j.jmaa.2008.12.053.
      G. M. Lieberman , Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988) , 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.
      S. A. Marano  and  N. S. Papageorgiou , Positive solutions to a Dirichlet problem with p-Laplacian and concave-convex nonlinearity depending on a parameter, Commun. Pure Appl. Anal., 12 (2013) , 815-829.  doi: 10.3934/cpaa.2013.12.815.
      M. Montenegro , Strong maximum principles for supersolutions of quasilinear elliptic equations, Nonlinear Anal., 37 (1999) , 431-448.  doi: 10.1016/S0362-546X(98)00057-1.
      D. Motreanu, V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014. doi: 10.1007/978-1-4614-9323-5.
      R. S. Palais , Homotopy theory of infinite dimensional manifolds, Topology, 5 (1966) , 1-16.  doi: 10.1016/0040-9383(66)90002-4.
      N. S. Papageorgiou  and  V. D. Rǎdulescu , Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance, Appl. Math. Optim., 69 (2014) , 393-430.  doi: 10.1007/s00245-013-9227-z.
      N. S. Papageorgiou  and  V. D. Rǎdulescu , Resonant (p, 2)-equations with asymmetric reaction, Anal. Appl., 13 (2015) , 481-506.  doi: 10.1142/S0219530514500134.
      N. S. Papageorgiou  and  V. D. Rǎdulescu , Noncoercive resonant (p, 2)-equations, Appl. Math. Optim., 76 (2017) , 621-639.  doi: 10.1007/s00245-016-9363-3.
      N. S. Papageorgiou  and  V. D. Rǎdulescu , Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014) , 2449-2479.  doi: 10.1016/j.jde.2014.01.010.
      N. S. Papageorgiou  and  V. D. Rǎdulescu , Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear. Stud., 16 (2016) , 737-764.  doi: 10.1515/ans-2016-0023.
      N. S. Papageorgiou , V. D. Rǎdulescu  and  D. D. Repovš , On a class of parametric (p, 2)-equations, Appl. Math. Optim., 75 (2017) , 193-228.  doi: 10.1007/s00245-016-9330-z.
      R. Pei and J. Zhang, Nontrivial solution for asymmetric (p, 2)-Laplacian Dirichlet problem, Bound. Value Probl., 2014 (2014), 15 pp. doi: 10.1186/s13661-014-0241-0.
      P. Pucci and J. Serrin, The Mximum Principle, Birkhäuser Verlag, Basel, 2007.
      J. Su , Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues, Nonlinear Anal., 48 (2002) , 881-895.  doi: 10.1016/S0362-546X(00)00221-2.
      M. Sun , Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance, J. Math. Anal. Appl., 386 (2012) , 661-668.  doi: 10.1016/j.jmaa.2011.08.030.
      M. Sun , M. Zhang  and  J. Su , Critical groups at zero and multiple solutions for a quasilinear elliptic equation, J. Math. Anal. Appl., 428 (2015) , 696-712.  doi: 10.1016/j.jmaa.2015.03.033.
      D. Yang and C. Bai, Nonlinear elliptic problem of 2-q-Laplacian type with asymmetric nonlinearities, Electron. J. Differential Equations, 2014 (2014), 13 pp.
  • 加载中
SHARE

Article Metrics

HTML views(262) PDF downloads(348) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return