We are concerned with the existence of infinitely many radial symmetric solutions for a nonlinear stationary problem driven by a new class of nonhomogeneous differential operators. The proof relies on the symmetric version of the mountain pass theorem.
Citation: |
A. Ambrosetti
and P. Rabinowitz
, Dual variational methods in critical point theory and applications, J. Functional Anal., 14 (1973)
, 349-381.
![]() ![]() |
|
A. Azzollini
, Minimum action solutions for a quasilinear equation, J. Lond. Math. Soc., 92 (2015)
, 583-595.
doi: 10.1112/jlms/jdv050.![]() ![]() ![]() |
|
A. Azzollini
, P. d'Avenia
and A. Pomponio
, Quasilinear elliptic equations in $\mathbb {R}^N$ via variational methods and Orlicz-Sobolev embeddings, Calc. Var. Partial Differential Equations, 49 (2014)
, 197-213.
doi: 10.1007/s00526-012-0578-0.![]() ![]() ![]() |
|
S. Baraket
, S. Chebbi
, N. Chorfi
and V. Rădulescu
, Non-autonomous eigenvalue problems with variable (p1, p2)-growth, Advanced Nonlinear Studies, 17 (2017)
, 781-792.
doi: 10.1515/ans-2016-6020.![]() ![]() ![]() |
|
P. Baroni
, M. Colombo
and G. Mingione
, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Mathematical Journal, 27 (2016)
, 347-379.
doi: 10.1090/spmj/1392.![]() ![]() ![]() |
|
H. Brezis
and F. Browder
, Partial differential equations in the 20th century, Adv. Math., 135 (1998)
, 76-144.
doi: 10.1006/aima.1997.1713.![]() ![]() ![]() |
|
N. Chorfi
and V. Rădulescu
, Standing wave solutions of a quasilinear degenerate Schroedinger equation with unbounded potential, Electronic Journal of the Qualitative Theory of Differential Equations, 37 (2016)
, 1-12.
![]() ![]() |
|
N. Chorfi
and V. Rădulescu
, Small perturbations of elliptic problems with variable growth, Applied Mathematics Letters, 74 (2017)
, 167-173.
doi: 10.1016/j.aml.2017.05.007.![]() ![]() ![]() |
|
M. Colombo
and G. Mingione
, Bounded minimisers of double phase variational integrals, Archive for Rational Mechanics and Analysis, 218 (2015)
, 219-273.
doi: 10.1007/s00205-015-0859-9.![]() ![]() ![]() |
|
R. Filippucci
, P. Pucci
and V. Rădulescu
, Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, Comm. Partial Differential Equations, 33 (2008)
, 706-717.
doi: 10.1080/03605300701518208.![]() ![]() ![]() |
|
T. C. Halsey
, Electrorheological fluids, Science, 258 (1992)
, 761-766.
![]() |
|
Y. Jabri, The Mountain Pass Theorem. Variants, Generalizations and Some Applications, Encyclopedia of Mathematics and its Applications, vol. 95, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511546655.![]() ![]() ![]() |
|
I. H. Kim
and Y. H. Kim
, Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents, Manuscripta Math., 147 (2015)
, 169-191.
doi: 10.1007/s00229-014-0718-2.![]() ![]() ![]() |
|
A. Kristaly, V. Rădulescu and C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, No. 136, Cambridge University Press, Cambridge, 384, 2010.
doi: 10.1017/CBO9780511760631.![]() ![]() ![]() |
|
P. Marcellini
, Regularity and existence of solutions of elliptic equations with (p, q)-growth conditions, J. Differential Equations, 90 (1991)
, 1-30.
doi: 10.1016/0022-0396(91)90158-6.![]() ![]() ![]() |
|
R. Palais
, The principle of symmetric criticality, Commun. Math. Phys., 69 (1979)
, 19-30.
doi: 10.1007/BF01941322.![]() ![]() ![]() |
|
P. Pucci and V. Rădulescu, The impact of the mountain pass theory in nonlinear analysis: A mathematical survey, Boll. Unione Mat. Ital., Series IX, 3 (2010), 543–582.
![]() ![]() |
|
P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1986.
doi: 10.1090/cbms/065.![]() ![]() ![]() |
|
V. Rădulescu and D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press, Taylor & Francis Group, Boca Raton FL, 2015.
doi: 10.1201/b18601.![]() ![]() ![]() |
|
V. V. Zhikov
, Lavrentiev phenomenon and homogenization for some variational problems, C. R. Acad. Sci. Paris, Sér. I, 316 (1993)
, 435-439.
![]() ![]() |