April  2019, 12(2): 413-433. doi: 10.3934/dcdss.2019027

A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity

1. 

College of Science, Civil Aviation University of China, Tianjin 300300, China

2. 

Department of Mathematics, Heilongjiang Institute of Technology, Harbin 150050, China

* Corresponding author: Binlin Zhang

Dedicated to Vicenţiu D. Rădulescu on the occasion of his 60th birthday

Received  April 2017 Revised  January 2018 Published  August 2018

Fund Project: M. Xiang was supported by the National Natural Science Foundation of China (No. 11601515) and the Fundamental Research Funds for the Central Universities (No. 3122017080). B. Zhang was supported by Natural Science Foundation of Heilongjiang Province of China (No. A201306) and Research Foundation of Heilongjiang Educational Committee (No. 12541667)

The aim of this paper is to discuss the existence and multiplicity of solutions for the following fractional
$p$
-Kirchhoff type problem involving the critical Sobolev exponent and discontinuous nonlinearity:
$\begin{align*}M\left(\displaystyle\iint_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}dxdy\right)(-\Delta)_p^su = \lambda|u|^{p_s^*-2}u+f(x,u)~~\mbox{in }\,\,\mathbb{R}^N,\end{align*}$
where
$M(t) = a+bt^{\theta-1}$
for
$t\geq 0$
,
$a\geq 0, b>0,\theta>1$
,
$(-\Delta)_p^s$
is the fractional
$p$
--Laplacian with
$0<s<1$
and
$1<p<N/s$
,
$p_s^* = Np/(N-ps)$
is the critical Sobolev exponent,
$\lambda>0$
is a parameter, and
$f:\mathbb{R}^N\times\mathbb{R}\rightarrow\mathbb{R}$
is a function. Under suitable assumptions on
$f$
, we show that there exists
$\lambda_0>0$
such that the above equation admits at least one nontrivial nonnegative solution provided
$\lambda<\lambda_0$
by using the nonsmooth critical point theory for locally Lipschitz functionals. Furthermore, for any
$k\in\mathbb{N}$
, there exists
$\Lambda_k>0$
such that the above equation has
$k$
pairs of nontrivial solutions if
$\lambda<\Lambda_k$
. The main feature is that our paper covers the degenerate case, that is the coefficient of
$(-\Delta)_p^s$
may be zero at zero. Moreover, the existence results are obtained when
$f$
is discontinuous. Thus, our results are new even in the semilinear case.
Citation: Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027
References:
[1]

C. O. Alves and A. M. Bertone, A discontinuous problem involving the p-Laplacian operator and critical exponent in $\mathbb{R}^N$, Electron. J. Differential Equations, 2003 (2003), 1-10.   Google Scholar

[2]

C. O. AlvesA. M. Bertone and J. V. Goncalves, A variational approach to discontinuous problems with critical Sobolev exponents, J. Math. Anal. Appl., 265 (2002), 103-127.  doi: 10.1006/jmaa.2001.7698.  Google Scholar

[3]

D. Applebaum, Lévy processes-from probability to finance quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.   Google Scholar

[4]

G. AutuoriA. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015), 699-714.  doi: 10.1016/j.na.2015.06.014.  Google Scholar

[5]

G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^N$, J. Differential Equations, 255 (2013), 2340-2362.  doi: 10.1016/j.jde.2013.06.016.  Google Scholar

[6]

A. Azzollini, A note on the elliptic Kirchhoff equation in $\mathbb{R}^N$ perturbed by a local nonlinearity, Commun. Contemp. Math., 17 (2015), 1450039, 5 pp. doi: 10.1142/S0219199714500394.  Google Scholar

[7]

B. BarriosE. ColoradoR. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900.  doi: 10.1016/j.anihpc.2014.04.003.  Google Scholar

[8]

L. Brasco, S. Mosconi and M. Squassina, Optimal decay of extremal functions for the fractional Sobolev inequality, Calc. Var. Partial Differentail Equations, 55 (2016), Art. 23, 32 pp. doi: 10.1007/s00526-016-0958-y.  Google Scholar

[9]

L. BrascoE. Parini and M. Squassina, Stability of variational eigenvalues for the fractional p-Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1813-1845.  doi: 10.3934/dcds.2016.36.1813.  Google Scholar

[10]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[11]

L. Caffarelli, Non-local diffusions, drifts and games, Nonlinear Partial Differential Equations, Abel Symposia, 7 (2012), 37-52.  doi: 10.1007/978-3-642-25361-4_3.  Google Scholar

[12]

M. Caponi and P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations, Ann. Mat. Pura Appl., 195 (2016), 2099-2129.  doi: 10.1007/s10231-016-0555-x.  Google Scholar

[13]

J. Chabrowski, On multiple solutions for the non-homogeneous p-Laplacian with a critical Sobolev exponent, Differ. Integral Equations, 8 (1995), 705-716.   Google Scholar

[14]

K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), 102-129.  doi: 10.1016/0022-247X(81)90095-0.  Google Scholar

[15]

F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc., 205 (1975), 247-262.  doi: 10.1090/S0002-9947-1975-0367131-6.  Google Scholar

[16]

A. Cotsiolis and N. K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225-236.  doi: 10.1016/j.jmaa.2004.03.034.  Google Scholar

[17]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[18]

L. D'OnofrioA. Fiscella and G. Molica Bisci, Perturbation methods for nonlocal Kirchhofftype problems, Fractional Calculus and Applied Analysis, 20 (2017), 829-853.  doi: 10.1515/fca-2017-0044.  Google Scholar

[19]

G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401 (2013), 706-713.  doi: 10.1016/j.jmaa.2012.12.053.  Google Scholar

[20]

A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonliear Anal., 94 (2014), 156-170.  doi: 10.1016/j.na.2013.08.011.  Google Scholar

[21]

A. Fiscella and P. Pucci, p-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal. Real World Appl., 35 (2017), 350-378.  doi: 10.1016/j.nonrwa.2016.11.004.  Google Scholar

[22]

A. Fiscella, Infinitely many solutions for a critical Kirchhoff type problem involving a fractional operator, Differ. Integral Equations, 29 (2016), 513-530.   Google Scholar

[23]

L. Gasiński and N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman and Hall/CRC, Boca Raton, 2005.  Google Scholar

[24]

J. V. Goncalves and C. O. Alves, Existence of positive solutions for m-Laplacian equations in $\mathbb{R}^N$ involving critical exponents, Nonlinear Anal., 32 (1998), 53-70.  doi: 10.1016/S0362-546X(97)00452-5.  Google Scholar

[25]

Y. HeG. B. Li and S. J. Peng, Concentrating bound states for Kirchhoff type problems in $\mathbb{R}^3$ involving critical Sobolev exponents, Adv. Nonlinear Stud., 14 (2014), 483-510.  doi: 10.1515/ans-2014-0214.  Google Scholar

[26]

X. M. He and W. M. Zou, Ground states for nonlinear Kirchhoff equations with critical growth, Ann. Mat. Pura Appl., 193 (2014), 473-500.  doi: 10.1007/s10231-012-0286-6.  Google Scholar

[27]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[28]

S. H. Liang and S. Y. Shi, Soliton solutions to Kirchhoff type problems involving the critical growth in $\mathbb{R}^N$, Nonlinear Anal., 81 (2013), 31-41.  doi: 10.1016/j.na.2012.12.003.  Google Scholar

[29]

P. L. Lions, The concentration-compactness principle in the calculus of variations, the limit case, Part Ⅰ, Rev. Mat. Iberoam., 1 (1985), 145–201. [Erratum in Part Ⅱ, Rev. Mat. Iberoam, 1 (1985), 45–121]. doi: 10.4171/RMI/6.  Google Scholar

[30]

J. LiuJ. F. Liao and C. L. Tang, Positive solutions for Kirchhoff-type equations with critical exponent in $\mathbb{R}^N$, J. Math. Anal. Appl., 429 (2015), 1153-1172.  doi: 10.1016/j.jmaa.2015.04.066.  Google Scholar

[31]

J. Mawhin and M. Willem, Critical Point Theory and Hamilton Systems, Springer Verlag, Berlin, 1989. doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[32]

X. MingqiG. Molica BisciG. Tian and B. L. Zhang, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian, Nonlinearity, 29 (2016), 357-374.  doi: 10.1088/0951-7715/29/2/357.  Google Scholar

[33]

G. Molica Bisci, V. Rădulescu and R. Servadei, Variational Methods for Nonlocal Fractional Equations, Encyclopedia of Mathematics and its Applications, 162, Cambridge University Press, Cambridge, 2016. doi: 10.1017/CBO9781316282397.  Google Scholar

[34]

G. Molica Bisci and D. Repovš, Higher nonlocal problems with bounded potential, J. Math. Anal. Appl., 420 (2014), 167-176.  doi: 10.1016/j.jmaa.2014.05.073.  Google Scholar

[35]

G. Molica Bisci and V. Rădulescu, Ground state solutions of scalar field fractional for Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 2985-3008.  doi: 10.1007/s00526-015-0891-5.  Google Scholar

[36]

S. Mosconi, K. Perera, M. Squassina and Y. Yang, The Br´ezis-Nirenberg problem for the fractional p–Laplacian, Calc. Var. Partial Differential Equations, 55 (2016), Art. 105, 25 pp. doi: 10.1007/s00526-016-1035-2.  Google Scholar

[37]

A. Ourraoui, On a p-Kirchhoff problem involving a critical nonlinearity, C. R. Math. Acad. Sci. Paris Ser. I, 352 (2014), 295-298.  doi: 10.1016/j.crma.2014.01.015.  Google Scholar

[38]

G. Palatucci and A. Pisante, Improved Sobolev embeddings, profle decomposition, and concentration compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799-829.  doi: 10.1007/s00526-013-0656-y.  Google Scholar

[39]

P. Piersanti and P. Pucci, Entire solutions for critical p-fractional Hardy Schrödinger Kirchhoff equations, Publ. Mat., 62 (2018), 3-36.  doi: 10.5565/PUBLMAT6211801.  Google Scholar

[40]

P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $\mathbb{R}^N$ involving nonlocal operators, Rev. Mat. Iberoam, 32 (2016), 1-22.  doi: 10.4171/RMI/879.  Google Scholar

[41]

P. PucciM. Q. Xiang and B. L. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in $\mathbb{R}^N$, Calc. Var. Partial Differential Equations, 54 (2015), 2785-2806.  doi: 10.1007/s00526-015-0883-5.  Google Scholar

[42]

P. PucciM. Q. Xiang and B. L. Zhang, Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv. Nonlinear Anal., 5 (2016), 27-55.  doi: 10.1515/anona-2015-0102.  Google Scholar

[43]

X. Ros-Oston and J. Serra, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities, Comm. Partial Differential Equations, 40 (2015), 115-133.  doi: 10.1080/03605302.2014.918144.  Google Scholar

[44]

R. Servadei and E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent, Revista Matemática Complutense, 28 (2015), 655-676.  doi: 10.1007/s13163-015-0170-1.  Google Scholar

[45]

X. D. Shang, Existence and multiplicity of solutions for a discontinuous problems with critical Sobolev exponents, J. Math. Anal. Appl., 385 (2012), 1033-1043.  doi: 10.1016/j.jmaa.2011.07.029.  Google Scholar

[46]

F. L. Wang and M. Q. Xiang, Multiplicity of solutions to a nonlocal Choquard equation involving fractional magnetic operators and critical exponent, Electron. J. Differential Equations, 2016 (2016), 1-11.   Google Scholar

[47]

M. Q. XiangB. L. Zhang and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021-1041.  doi: 10.1016/j.jmaa.2014.11.055.  Google Scholar

[48]

M. Q. Xiang, B. L. Zhang and M. Ferrara, Multiplicity results for the nonhomogeneous fractional p–Kirchhoff equations with concave-convex nonlinearities, Proc. Roy. Soc. A, 471 (2015), 20150034, 14 pp. doi: 10.1098/rspa.2015.0034.  Google Scholar

[49]

M. Q. XiangB. L. Zhang and V. Rădulescu, Existence of solutions for perturbed fractional p-Laplacian equations, J. Differential Equations, 260 (2016), 1392-1413.  doi: 10.1016/j.jde.2015.09.028.  Google Scholar

[50]

M. Q. XiangB. L. Zhang and X. Zhang, A nonhomogeneous fractional p-Kirchhoff type problem involving critical exponent in $\mathbb{R}^N$, Adv. Nonlinear Stud., 17 (2017), 611-640.  doi: 10.1515/ans-2016-6002.  Google Scholar

show all references

References:
[1]

C. O. Alves and A. M. Bertone, A discontinuous problem involving the p-Laplacian operator and critical exponent in $\mathbb{R}^N$, Electron. J. Differential Equations, 2003 (2003), 1-10.   Google Scholar

[2]

C. O. AlvesA. M. Bertone and J. V. Goncalves, A variational approach to discontinuous problems with critical Sobolev exponents, J. Math. Anal. Appl., 265 (2002), 103-127.  doi: 10.1006/jmaa.2001.7698.  Google Scholar

[3]

D. Applebaum, Lévy processes-from probability to finance quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.   Google Scholar

[4]

G. AutuoriA. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015), 699-714.  doi: 10.1016/j.na.2015.06.014.  Google Scholar

[5]

G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^N$, J. Differential Equations, 255 (2013), 2340-2362.  doi: 10.1016/j.jde.2013.06.016.  Google Scholar

[6]

A. Azzollini, A note on the elliptic Kirchhoff equation in $\mathbb{R}^N$ perturbed by a local nonlinearity, Commun. Contemp. Math., 17 (2015), 1450039, 5 pp. doi: 10.1142/S0219199714500394.  Google Scholar

[7]

B. BarriosE. ColoradoR. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900.  doi: 10.1016/j.anihpc.2014.04.003.  Google Scholar

[8]

L. Brasco, S. Mosconi and M. Squassina, Optimal decay of extremal functions for the fractional Sobolev inequality, Calc. Var. Partial Differentail Equations, 55 (2016), Art. 23, 32 pp. doi: 10.1007/s00526-016-0958-y.  Google Scholar

[9]

L. BrascoE. Parini and M. Squassina, Stability of variational eigenvalues for the fractional p-Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1813-1845.  doi: 10.3934/dcds.2016.36.1813.  Google Scholar

[10]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[11]

L. Caffarelli, Non-local diffusions, drifts and games, Nonlinear Partial Differential Equations, Abel Symposia, 7 (2012), 37-52.  doi: 10.1007/978-3-642-25361-4_3.  Google Scholar

[12]

M. Caponi and P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations, Ann. Mat. Pura Appl., 195 (2016), 2099-2129.  doi: 10.1007/s10231-016-0555-x.  Google Scholar

[13]

J. Chabrowski, On multiple solutions for the non-homogeneous p-Laplacian with a critical Sobolev exponent, Differ. Integral Equations, 8 (1995), 705-716.   Google Scholar

[14]

K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), 102-129.  doi: 10.1016/0022-247X(81)90095-0.  Google Scholar

[15]

F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc., 205 (1975), 247-262.  doi: 10.1090/S0002-9947-1975-0367131-6.  Google Scholar

[16]

A. Cotsiolis and N. K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225-236.  doi: 10.1016/j.jmaa.2004.03.034.  Google Scholar

[17]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[18]

L. D'OnofrioA. Fiscella and G. Molica Bisci, Perturbation methods for nonlocal Kirchhofftype problems, Fractional Calculus and Applied Analysis, 20 (2017), 829-853.  doi: 10.1515/fca-2017-0044.  Google Scholar

[19]

G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401 (2013), 706-713.  doi: 10.1016/j.jmaa.2012.12.053.  Google Scholar

[20]

A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonliear Anal., 94 (2014), 156-170.  doi: 10.1016/j.na.2013.08.011.  Google Scholar

[21]

A. Fiscella and P. Pucci, p-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal. Real World Appl., 35 (2017), 350-378.  doi: 10.1016/j.nonrwa.2016.11.004.  Google Scholar

[22]

A. Fiscella, Infinitely many solutions for a critical Kirchhoff type problem involving a fractional operator, Differ. Integral Equations, 29 (2016), 513-530.   Google Scholar

[23]

L. Gasiński and N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman and Hall/CRC, Boca Raton, 2005.  Google Scholar

[24]

J. V. Goncalves and C. O. Alves, Existence of positive solutions for m-Laplacian equations in $\mathbb{R}^N$ involving critical exponents, Nonlinear Anal., 32 (1998), 53-70.  doi: 10.1016/S0362-546X(97)00452-5.  Google Scholar

[25]

Y. HeG. B. Li and S. J. Peng, Concentrating bound states for Kirchhoff type problems in $\mathbb{R}^3$ involving critical Sobolev exponents, Adv. Nonlinear Stud., 14 (2014), 483-510.  doi: 10.1515/ans-2014-0214.  Google Scholar

[26]

X. M. He and W. M. Zou, Ground states for nonlinear Kirchhoff equations with critical growth, Ann. Mat. Pura Appl., 193 (2014), 473-500.  doi: 10.1007/s10231-012-0286-6.  Google Scholar

[27]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[28]

S. H. Liang and S. Y. Shi, Soliton solutions to Kirchhoff type problems involving the critical growth in $\mathbb{R}^N$, Nonlinear Anal., 81 (2013), 31-41.  doi: 10.1016/j.na.2012.12.003.  Google Scholar

[29]

P. L. Lions, The concentration-compactness principle in the calculus of variations, the limit case, Part Ⅰ, Rev. Mat. Iberoam., 1 (1985), 145–201. [Erratum in Part Ⅱ, Rev. Mat. Iberoam, 1 (1985), 45–121]. doi: 10.4171/RMI/6.  Google Scholar

[30]

J. LiuJ. F. Liao and C. L. Tang, Positive solutions for Kirchhoff-type equations with critical exponent in $\mathbb{R}^N$, J. Math. Anal. Appl., 429 (2015), 1153-1172.  doi: 10.1016/j.jmaa.2015.04.066.  Google Scholar

[31]

J. Mawhin and M. Willem, Critical Point Theory and Hamilton Systems, Springer Verlag, Berlin, 1989. doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[32]

X. MingqiG. Molica BisciG. Tian and B. L. Zhang, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian, Nonlinearity, 29 (2016), 357-374.  doi: 10.1088/0951-7715/29/2/357.  Google Scholar

[33]

G. Molica Bisci, V. Rădulescu and R. Servadei, Variational Methods for Nonlocal Fractional Equations, Encyclopedia of Mathematics and its Applications, 162, Cambridge University Press, Cambridge, 2016. doi: 10.1017/CBO9781316282397.  Google Scholar

[34]

G. Molica Bisci and D. Repovš, Higher nonlocal problems with bounded potential, J. Math. Anal. Appl., 420 (2014), 167-176.  doi: 10.1016/j.jmaa.2014.05.073.  Google Scholar

[35]

G. Molica Bisci and V. Rădulescu, Ground state solutions of scalar field fractional for Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 2985-3008.  doi: 10.1007/s00526-015-0891-5.  Google Scholar

[36]

S. Mosconi, K. Perera, M. Squassina and Y. Yang, The Br´ezis-Nirenberg problem for the fractional p–Laplacian, Calc. Var. Partial Differential Equations, 55 (2016), Art. 105, 25 pp. doi: 10.1007/s00526-016-1035-2.  Google Scholar

[37]

A. Ourraoui, On a p-Kirchhoff problem involving a critical nonlinearity, C. R. Math. Acad. Sci. Paris Ser. I, 352 (2014), 295-298.  doi: 10.1016/j.crma.2014.01.015.  Google Scholar

[38]

G. Palatucci and A. Pisante, Improved Sobolev embeddings, profle decomposition, and concentration compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799-829.  doi: 10.1007/s00526-013-0656-y.  Google Scholar

[39]

P. Piersanti and P. Pucci, Entire solutions for critical p-fractional Hardy Schrödinger Kirchhoff equations, Publ. Mat., 62 (2018), 3-36.  doi: 10.5565/PUBLMAT6211801.  Google Scholar

[40]

P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $\mathbb{R}^N$ involving nonlocal operators, Rev. Mat. Iberoam, 32 (2016), 1-22.  doi: 10.4171/RMI/879.  Google Scholar

[41]

P. PucciM. Q. Xiang and B. L. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in $\mathbb{R}^N$, Calc. Var. Partial Differential Equations, 54 (2015), 2785-2806.  doi: 10.1007/s00526-015-0883-5.  Google Scholar

[42]

P. PucciM. Q. Xiang and B. L. Zhang, Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv. Nonlinear Anal., 5 (2016), 27-55.  doi: 10.1515/anona-2015-0102.  Google Scholar

[43]

X. Ros-Oston and J. Serra, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities, Comm. Partial Differential Equations, 40 (2015), 115-133.  doi: 10.1080/03605302.2014.918144.  Google Scholar

[44]

R. Servadei and E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent, Revista Matemática Complutense, 28 (2015), 655-676.  doi: 10.1007/s13163-015-0170-1.  Google Scholar

[45]

X. D. Shang, Existence and multiplicity of solutions for a discontinuous problems with critical Sobolev exponents, J. Math. Anal. Appl., 385 (2012), 1033-1043.  doi: 10.1016/j.jmaa.2011.07.029.  Google Scholar

[46]

F. L. Wang and M. Q. Xiang, Multiplicity of solutions to a nonlocal Choquard equation involving fractional magnetic operators and critical exponent, Electron. J. Differential Equations, 2016 (2016), 1-11.   Google Scholar

[47]

M. Q. XiangB. L. Zhang and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021-1041.  doi: 10.1016/j.jmaa.2014.11.055.  Google Scholar

[48]

M. Q. Xiang, B. L. Zhang and M. Ferrara, Multiplicity results for the nonhomogeneous fractional p–Kirchhoff equations with concave-convex nonlinearities, Proc. Roy. Soc. A, 471 (2015), 20150034, 14 pp. doi: 10.1098/rspa.2015.0034.  Google Scholar

[49]

M. Q. XiangB. L. Zhang and V. Rădulescu, Existence of solutions for perturbed fractional p-Laplacian equations, J. Differential Equations, 260 (2016), 1392-1413.  doi: 10.1016/j.jde.2015.09.028.  Google Scholar

[50]

M. Q. XiangB. L. Zhang and X. Zhang, A nonhomogeneous fractional p-Kirchhoff type problem involving critical exponent in $\mathbb{R}^N$, Adv. Nonlinear Stud., 17 (2017), 611-640.  doi: 10.1515/ans-2016-6002.  Google Scholar

[1]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[2]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[3]

Carlo Mercuri, Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 469-493. doi: 10.3934/dcds.2010.28.469

[4]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[5]

Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254

[6]

E. N. Dancer, Zhitao Zhang. Critical point, anti-maximum principle and semipositone p-laplacian problems. Conference Publications, 2005, 2005 (Special) : 209-215. doi: 10.3934/proc.2005.2005.209

[7]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[8]

Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130

[9]

Kanishka Perera, Andrzej Szulkin. p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 743-753. doi: 10.3934/dcds.2005.13.743

[10]

Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007

[11]

Pavel Jirásek. On Compactness Conditions for the $p$-Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 715-726. doi: 10.3934/cpaa.2016.15.715

[12]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[13]

Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063

[14]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[15]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[16]

Hua Jin, Wenbin Liu, Jianjun Zhang. Multiple solutions of fractional Kirchhoff equations involving a critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 533-545. doi: 10.3934/dcdss.2018029

[17]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[18]

Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773

[19]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[20]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (83)
  • HTML views (105)
  • Cited by (0)

Other articles
by authors

[Back to Top]