\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

New exact solutions for some fractional order differential equations via improved sub-equation method

Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • In this paper, improved sub-equation method is proposed to obtain new exact analytical solutions for some nonlinear fractional differential equations by means of modified Riemann Liouville derivative. The method is applied to time-fractional biological population model and space-time fractional Fisher equation successfully. Finally, simulations of new exact analytical solutions are presented graphically.

    Mathematics Subject Classification: 83C15, 34A08.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The numerical simulations of real and imaginal part for fractional Biological Population Model for $u^{3}_{1}$, respectively

    Figure 2.  The numerical simulations of fractional Fisher equation for $u^{1}_{1}$, $u^{1}_{2}$, $u^{3}_{1}$ and $u^{4}_{1}$, respectively

  •   E. A. B. Abdel-Salama , E. A. Yousif  and  G. F. Hassanc , Solution of nonlinear space time fractional differential equations via the fractional projective Riccati expansion method, Physics, 2013 (2015) , 657-675. 
      J. F. Alzaidy , Fractional sub-equation method and its applications to the space-time Fractional differential equations in Mathematical Physics, British journal of Math. and Comput. Sci., 3 (2013) , 153-163.  doi: 10.9734/BJMCS/2013/2908.
      A. Atangana  and  B. Dumitru , New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016) , 763-769. 
      A. Atangana  and  I. Koca , Chaos in a simple nonlinear system with Atangana aleanu derivatives with fractional order, Solitons and Fractals, 89 (2016) , 447-454.  doi: 10.1016/j.chaos.2016.02.012.
      D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific Publishing, Singapore, 2012. doi: 10.1142/9789814355216.
      H. M. Baskonus  and  H. Bulut , Regarding on the prototype solutions for the nonlinear fractional-order biological population model, AIP Conference Proceedings, 1738 (2016) , 290004.  doi: 10.1063/1.4952076.
      A. Bekir  and  O. Guner , Exact solutions of nonlinear Fractional differential equations by $ (G^{^{\prime }}/G)$−expansion method, Chin Phys. B., 22 (2013) , 110202. 
      Z. Bin , $ (G^{^{\prime }}/G)$-expansion method for solving Fractional partial differential equations in the theory mathematical physics, Commun. in Theo. Physics., 58 (2012) , 623-628. 
      M. Cui , Compact finite difference method for the Fractional diffusion equation, Jounal of Computational Physics, 228 (2009) , 7792-7804.  doi: 10.1016/j.jcp.2009.07.021.
      A. M. A. El-Sayed , S. Z. Rida  and  A. A. M. Arafa , Exact solution of fractional order biological population model, Commun. in Theo. Phys., 52 (2009) , 992-996.  doi: 10.1088/0253-6102/52/6/04.
      A. Esen , Y. Ucar , O. Tasbozan  and  N. M. Yagmurlu , A galerkin finite element method to solve fractional diffusion and fractional Diffusion-Wave equations, Mathematical Modelling and Analysis, 18 (2013) , 260-273.  doi: 10.3846/13926292.2013.783884.
      R. A. Fisher , The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937) , 355-369.  doi: 10.1111/j.1469-1809.1937.tb02153.x.
      O. Guner  and  A. Bekir , On the concept of exact solution for nonlinear differential equations of fractional-order, Math. Meth. Appl. Sci., 39 (2016) , 4035-4043.  doi: 10.1002/mma.3845.
      Q. Huang , G. Huang  and  H. Zhang , A Finite element solution for the fractional advection-dispersion equation, Advances in Water Resorces, 131 (2008) , 1578-1589.  doi: 10.1016/j.advwatres.2008.07.002.
      H. Jafari, H. Tajadedi, N. Kadkhoda and D. Baleanu, Fractional sub-equation method for Cahn-Hilliard and Klein-Gordon equations, Abstract and Applied Analysis, 2013 (2013), Art. ID 587179, 5 pp.
      Y. Liu, Study on space-time fractional nonlinear biological equation in Radial Symmetry, Mathematical Problems in Engineering, 2013 (2013), Art. ID 654759, 6 pp.
      Y. Liu , Z. Li  and  Y. Zhang , Homotophy Perturbation Method to fractional biological population equation, Fractional Differential Calculus, 1 (2011) , 117-124.  doi: 10.7153/fdc-01-07.
      Z. Odibat  and  S. Momoni , Application of Variational Iteration Method to nonlinear differential equations of fractional order, International Journal of Science and Numerical Simulation, 7 (2006) , 27-34.  doi: 10.1515/IJNSNS.2006.7.1.27.
      I. Podlubny, An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, San Diego-Boston-New York-London-Tokyo-Toronto, 1999.
      B. S. T. Alkahtani , Chua's circuit model with Atangana aleanu derivative with fractional order Chaos, Solitons and Fractals, 89 (2016) , 539-546.  doi: 10.1016/j.chaos.2016.03.012.
      M. Safari , D. D. Ganji  and  M. Moslemi , Application of He's Variational Iteration method and Adomian's decomposition method to the fractional KdV-Burgers-Kuramoto equation, Computer and Mathematics with Applications., 58 (2009) , 2091-2097.  doi: 10.1016/j.camwa.2009.03.043.
      S. Sahoo  and  S. S. Ray , Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV- Zakharov-Kuznetsov equations, Computers and Mathematics with Applications, 70 (2015) , 158-166.  doi: 10.1016/j.camwa.2015.05.002.
      G. W. Wang  and  T. Z. Xu , The Improved fractional sub-equation method and its applications to nonlinear fractional equations, Theoretical and Mathematical Physics, 66 (2014) , 595-602. 
      G.-ch. Wu  and  E. W. M. Lee , Fractional Variational Iteration Method and its application, Physics Letter A, 374 (2010) , 2506-2509.  doi: 10.1016/j.physleta.2010.04.034.
      Y. Zhang , A finite difference method for fractional partial differential equation, Appl. Math. and Comput., 2015 (2009) , 524-529.  doi: 10.1016/j.amc.2009.05.018.
      S. Zhang , Q. A. Zong , D. Liu  and  Q. Gao , A generalized exp-function method for fractional Riccati differential equations, Comm. Fract. Calc., 1 (2010) , 48-52. 
      S. Zhang  and  H. Q. Zhang , Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A,, 375 (2011) , 1069-1073.  doi: 10.1016/j.physleta.2011.01.029.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(582) PDF downloads(1607) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return