In this paper, improved sub-equation method is proposed to obtain new exact analytical solutions for some nonlinear fractional differential equations by means of modified Riemann Liouville derivative. The method is applied to time-fractional biological population model and space-time fractional Fisher equation successfully. Finally, simulations of new exact analytical solutions are presented graphically.
Citation: |
E. A. B. Abdel-Salama
, E. A. Yousif
and G. F. Hassanc
, Solution of nonlinear space time fractional differential equations via the fractional projective Riccati expansion method, Physics, 2013 (2015)
, 657-675.
![]() |
|
J. F. Alzaidy
, Fractional sub-equation method and its applications to the space-time Fractional differential equations in Mathematical Physics, British journal of Math. and Comput. Sci., 3 (2013)
, 153-163.
doi: 10.9734/BJMCS/2013/2908.![]() ![]() |
|
A. Atangana
and B. Dumitru
, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016)
, 763-769.
![]() |
|
A. Atangana
and I. Koca
, Chaos in a simple nonlinear system with Atangana aleanu derivatives with fractional order, Solitons and Fractals, 89 (2016)
, 447-454.
doi: 10.1016/j.chaos.2016.02.012.![]() ![]() ![]() |
|
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo,
Fractional Calculus: Models and Numerical Methods, World Scientific Publishing, Singapore, 2012.
doi: 10.1142/9789814355216.![]() ![]() ![]() |
|
H. M. Baskonus
and H. Bulut
, Regarding on the prototype solutions for the nonlinear fractional-order biological population model, AIP Conference Proceedings, 1738 (2016)
, 290004.
doi: 10.1063/1.4952076.![]() ![]() |
|
A. Bekir
and O. Guner
, Exact solutions of nonlinear Fractional differential equations by $ (G^{^{\prime }}/G)$−expansion method, Chin Phys. B., 22 (2013)
, 110202.
![]() |
|
Z. Bin
, $ (G^{^{\prime }}/G)$-expansion method for solving Fractional partial differential equations in the theory mathematical physics, Commun. in Theo. Physics., 58 (2012)
, 623-628.
![]() |
|
M. Cui
, Compact finite difference method for the Fractional diffusion equation, Jounal of Computational Physics, 228 (2009)
, 7792-7804.
doi: 10.1016/j.jcp.2009.07.021.![]() ![]() ![]() |
|
A. M. A. El-Sayed
, S. Z. Rida
and A. A. M. Arafa
, Exact solution of fractional order biological population model, Commun. in Theo. Phys., 52 (2009)
, 992-996.
doi: 10.1088/0253-6102/52/6/04.![]() ![]() ![]() |
|
A. Esen
, Y. Ucar
, O. Tasbozan
and N. M. Yagmurlu
, A galerkin finite element method to solve fractional diffusion and fractional Diffusion-Wave equations, Mathematical Modelling and Analysis, 18 (2013)
, 260-273.
doi: 10.3846/13926292.2013.783884.![]() ![]() ![]() |
|
R. A. Fisher
, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937)
, 355-369.
doi: 10.1111/j.1469-1809.1937.tb02153.x.![]() ![]() |
|
O. Guner
and A. Bekir
, On the concept of exact solution for nonlinear differential equations of fractional-order, Math. Meth. Appl. Sci., 39 (2016)
, 4035-4043.
doi: 10.1002/mma.3845.![]() ![]() ![]() |
|
Q. Huang
, G. Huang
and H. Zhang
, A Finite element solution for the fractional advection-dispersion equation, Advances in Water Resorces, 131 (2008)
, 1578-1589.
doi: 10.1016/j.advwatres.2008.07.002.![]() ![]() |
|
H. Jafari, H. Tajadedi, N. Kadkhoda and D. Baleanu, Fractional sub-equation method for Cahn-Hilliard and Klein-Gordon equations, Abstract and Applied Analysis, 2013 (2013), Art. ID 587179, 5 pp.
![]() ![]() |
|
Y. Liu, Study on space-time fractional nonlinear biological equation in Radial Symmetry, Mathematical Problems in Engineering, 2013 (2013), Art. ID 654759, 6 pp.
![]() ![]() |
|
Y. Liu
, Z. Li
and Y. Zhang
, Homotophy Perturbation Method to fractional biological population equation, Fractional Differential Calculus, 1 (2011)
, 117-124.
doi: 10.7153/fdc-01-07.![]() ![]() ![]() |
|
Z. Odibat
and S. Momoni
, Application of Variational Iteration Method to nonlinear differential equations of fractional order, International Journal of Science and Numerical Simulation, 7 (2006)
, 27-34.
doi: 10.1515/IJNSNS.2006.7.1.27.![]() ![]() ![]() |
|
I. Podlubny, An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, San Diego-Boston-New York-London-Tokyo-Toronto, 1999.
![]() ![]() |
|
B. S. T. Alkahtani
, Chua's circuit model with Atangana aleanu derivative with fractional order Chaos, Solitons and Fractals, 89 (2016)
, 539-546.
doi: 10.1016/j.chaos.2016.03.012.![]() ![]() ![]() |
|
M. Safari
, D. D. Ganji
and M. Moslemi
, Application of He's Variational Iteration method and Adomian's decomposition method to the fractional KdV-Burgers-Kuramoto equation, Computer and Mathematics with Applications., 58 (2009)
, 2091-2097.
doi: 10.1016/j.camwa.2009.03.043.![]() ![]() ![]() |
|
S. Sahoo
and S. S. Ray
, Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV- Zakharov-Kuznetsov equations, Computers and Mathematics with Applications, 70 (2015)
, 158-166.
doi: 10.1016/j.camwa.2015.05.002.![]() ![]() ![]() |
|
G. W. Wang
and T. Z. Xu
, The Improved fractional sub-equation method and its applications to nonlinear fractional equations, Theoretical and Mathematical Physics, 66 (2014)
, 595-602.
![]() |
|
G.-ch. Wu
and E. W. M. Lee
, Fractional Variational Iteration Method and its application, Physics Letter A, 374 (2010)
, 2506-2509.
doi: 10.1016/j.physleta.2010.04.034.![]() ![]() ![]() |
|
Y. Zhang
, A finite difference method for fractional partial differential equation, Appl. Math. and Comput., 2015 (2009)
, 524-529.
doi: 10.1016/j.amc.2009.05.018.![]() ![]() ![]() |
|
S. Zhang
, Q. A. Zong
, D. Liu
and Q. Gao
, A generalized exp-function method for fractional Riccati differential equations, Comm. Fract. Calc., 1 (2010)
, 48-52.
![]() |
|
S. Zhang
and H. Q. Zhang
, Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A,, 375 (2011)
, 1069-1073.
doi: 10.1016/j.physleta.2011.01.029.![]() ![]() ![]() |
The numerical simulations of real and imaginal part for fractional Biological Population Model for
The numerical simulations of fractional Fisher equation for