April  2019, 12(2): ⅰ-ⅳ. doi: 10.3934/dcdss.201902i

Professor Vicenţiu Rǎdulescu celebrates his sixtieth anniversary

1. 

Department of Mathematics, Pisa University, Italy, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy

2. 

School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland

3. 

Department of Mathematics, University of Trento, via Sommarive 14, 38123 Povo (Trento), Italy

Published  August 2018

Citation: Hugo Beirão da Veiga, Marius Ghergu, Alberto Valli. Professor Vicenţiu Rǎdulescu celebrates his sixtieth anniversary. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : ⅰ-ⅳ. doi: 10.3934/dcdss.201902i
References:
[1]

S. DumontL. DupaigneO. Goubet and V. D. Rǎdulescu, Back to the Keller-Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud., 7 (2007), 271-298.  doi: 10.1515/ans-2007-0205.  Google Scholar

[2]

L. DupaigneM. Ghergu and V. D. Rǎdulescu, Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pures Appl., 87 (2007), 563-581.  doi: 10.1016/j.matpur.2007.03.002.  Google Scholar

[3]

R. FilippucciP. Pucci and V. D. Rǎdulescu, Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, Comm. Partial Differential Equations, 33 (2008), 706-717.  doi: 10.1080/03605300701518208.  Google Scholar

[4]

M. Ghergu and V.D. Rǎdulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations, 195 (2003), 520-536.  doi: 10.1016/S0022-0396(03)00105-0.  Google Scholar

[5]

M. Ghergu and V. D. Rǎdulescu, Multiparameter bifurcation and asymptotics for the singular Lane-Emden-Fowler equation with a convection term, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 61-83.  doi: 10.1017/S0308210500003760.  Google Scholar

[6]

M. Ghergu and V. D. Rǎdulescu, A singular Gierer-Meinhardt system with different source terms, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 1215-1234.  doi: 10.1017/S0308210507000637.  Google Scholar

[7]

M. Ghergu and V. D. Rǎdulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis. Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, Oxford, 2008. ⅹⅵ+298 pp.  Google Scholar

[8]

M. Ghergu and V. D. Rǎdulescu, Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics, Springer Monographs in Mathematics. Springer, Heidelberg, 2012. ⅹⅷ+391 pp. doi: 10.1007/978-3-642-22664-9.  Google Scholar

[9]

A. Kristàly, V. D. Rǎdulescu and C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics. Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, 136. Cambridge University Press, Cambridge, 2010. ⅹⅵ+368 pp. doi: 10.1017/CBO9780511760631.  Google Scholar

[10]

G. Molica-Bisci, V. D. Rǎdulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016. ⅹⅵ+383 pp. doi: 10.1017/CBO9781316282397.  Google Scholar

[11]

G. Molica Bisci and V. D. Rǎdulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 2985-3008.  doi: 10.1007/s00526-015-0891-5.  Google Scholar

[12]

G. Molica Bisci and V. D. Rǎdulescu, A sharp eigenvalue theorem for fractional elliptic equations, Israel Journal of Mathematics, 219 (2017), 331-351.  doi: 10.1007/s11856-017-1482-2.  Google Scholar

[13]

D. Motreanu and V. D. Rǎdulescu, Variational and Non-Variational Methods in Nonlinear Analysis and Boundary Value Problems. Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht, 2003. ⅹⅱ+375 pp. doi: 10.1007/978-1-4757-6921-0.  Google Scholar

[14]

N. S. Papageorgiou and V. D. Rǎdulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479.  doi: 10.1016/j.jde.2014.01.010.  Google Scholar

[15]

N. S. Papageorgiou and V. D. Rǎdulescu, Multiplicity of solutions for resonant Neumann problems with an indefinite and unbounded potential, Trans. Amer. Math. Soc., 367 (2015), 8723-8756.  doi: 10.1090/S0002-9947-2014-06518-5.  Google Scholar

[16]

N. S. Papageorgiou and V. D. Rǎdulescu, Multiplicity theorems for nonlinear nonhomogeneous Robin problems, Rev. Mat. Iberoam., 33 (2017), 251-289.  doi: 10.4171/RMI/936.  Google Scholar

[17]

N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Multiple solutions for resonant problems of the Robin p-Laplacian plus an indefinite potential, Calc. Var. Partial Differential Equations, 56 (2017), Art. 63, 23 pp. doi: 10.1007/s00526-017-1164-2.  Google Scholar

[18]

N. S. PapageorgiouV. D. Rǎdulescu and D. D. Repovš, Robin problems with a general potential and a superlinear reaction, J. Differential Equations, 263 (2017), 3244-3290.  doi: 10.1016/j.jde.2017.04.032.  Google Scholar

[19]

N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Modern Nonlinear Analysis: Theory and Applications, Springer Monographs in Mathematics, Springer-Verlag, Heidelberg, 2018 (in press). Google Scholar

[20]

P. Pucci and V. D. Rǎdulescu, Remarks on a polyharmonic eigenvalue problem, C. R. Math. Acad. Sci. Paris, 348 (2010), 161-164.  doi: 10.1016/j.crma.2010.01.013.  Google Scholar

[21]

P. Pucci and V. D. Rǎdulescu, The impact of the mountain pass theory in nonlinear analysis: A mathematical survey., Boll. Unione Mat. Ital., 3 (2010), 543-582.   Google Scholar

[22]

P. Pucci and V. D. Rǎdulescu, Combined effects in quasilinear elliptic problems with lack of compactness, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 22 (2011), 189-205.  doi: 10.4171/RLM/595.  Google Scholar

[23]

P. Pucci, V. D. Rǎdulescu and H. Weinberger, James Serrin. Selected Papers, 2 volumes, 1718 pages, Contemporary Mathematicians, Birkhäuser, Basel, 2014.  Google Scholar

[24]

V. D. Rǎdulescu, Analyse de quelques problèmes liés à l'équation de Ginzburg-Landau, PhD Thesis, 29 June 1995, https://www.theses.fr/1995PA066189. Google Scholar

[25]

V. D. Rǎdulescu, Habilitation à diriger des recherches at the Université Pierre et Marie Curie (Paris Ⅵ) with the mémoire: Analyse de quelques problèmes aux limites elliptiques non linéaires Habilitation à diriger des recherches at the Université Pierre et Marie Curie (Paris Ⅵ), 18 February 2003. Google Scholar

[26]

V. D. Rǎdulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods, Contemporary Mathematics and Its Applications, 6. Hindawi Publishing Corporation, New York, 2008. ⅹⅱ+192 pp. doi: 10.1155/9789774540394.  Google Scholar

[27]

V. D. Rǎdulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal., 121 (2015), 336-369.  doi: 10.1016/j.na.2014.11.007.  Google Scholar

[28]

V. D. Rǎdulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015. xxi+301 pp. doi: 10.1201/b18601.  Google Scholar

[29]

V. D. RǎdulescuM. Xiang and B. Zhang, Existence of solutions for perturbed fractional p-Laplacian equations, J. Differential Equations, 260 (2016), 1392-1413.  doi: 10.1016/j.jde.2015.09.028.  Google Scholar

[30]

V. D. RǎdulescuM. Xiang and B. Zhang, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian, Nonlinearity, 29 (2016), 3186-3205.  doi: 10.1088/0951-7715/29/10/3186.  Google Scholar

[31]

J. Serrin, E. Mitidieri and V. D. Rǎdulescu, Recent Trends in Nonlinear Partial Differential Equations I: Evolution Problems, Contemporary Mathematics, vol. 594, American Mathematical Society, 307 pp., 2013. Google Scholar

[32]

J. Serrin, E. Mitidieri and V. D. Rǎdulescu, Recent Trends in Nonlinear Partial Differential Equations II: Stationary Problems, Contemporary Mathematics, vol. 595, American Mathematical Society, 340 pp., 2013. doi: 10.1090/conm/595.  Google Scholar

show all references

References:
[1]

S. DumontL. DupaigneO. Goubet and V. D. Rǎdulescu, Back to the Keller-Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud., 7 (2007), 271-298.  doi: 10.1515/ans-2007-0205.  Google Scholar

[2]

L. DupaigneM. Ghergu and V. D. Rǎdulescu, Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pures Appl., 87 (2007), 563-581.  doi: 10.1016/j.matpur.2007.03.002.  Google Scholar

[3]

R. FilippucciP. Pucci and V. D. Rǎdulescu, Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, Comm. Partial Differential Equations, 33 (2008), 706-717.  doi: 10.1080/03605300701518208.  Google Scholar

[4]

M. Ghergu and V.D. Rǎdulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations, 195 (2003), 520-536.  doi: 10.1016/S0022-0396(03)00105-0.  Google Scholar

[5]

M. Ghergu and V. D. Rǎdulescu, Multiparameter bifurcation and asymptotics for the singular Lane-Emden-Fowler equation with a convection term, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 61-83.  doi: 10.1017/S0308210500003760.  Google Scholar

[6]

M. Ghergu and V. D. Rǎdulescu, A singular Gierer-Meinhardt system with different source terms, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 1215-1234.  doi: 10.1017/S0308210507000637.  Google Scholar

[7]

M. Ghergu and V. D. Rǎdulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis. Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, Oxford, 2008. ⅹⅵ+298 pp.  Google Scholar

[8]

M. Ghergu and V. D. Rǎdulescu, Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics, Springer Monographs in Mathematics. Springer, Heidelberg, 2012. ⅹⅷ+391 pp. doi: 10.1007/978-3-642-22664-9.  Google Scholar

[9]

A. Kristàly, V. D. Rǎdulescu and C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics. Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, 136. Cambridge University Press, Cambridge, 2010. ⅹⅵ+368 pp. doi: 10.1017/CBO9780511760631.  Google Scholar

[10]

G. Molica-Bisci, V. D. Rǎdulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016. ⅹⅵ+383 pp. doi: 10.1017/CBO9781316282397.  Google Scholar

[11]

G. Molica Bisci and V. D. Rǎdulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 2985-3008.  doi: 10.1007/s00526-015-0891-5.  Google Scholar

[12]

G. Molica Bisci and V. D. Rǎdulescu, A sharp eigenvalue theorem for fractional elliptic equations, Israel Journal of Mathematics, 219 (2017), 331-351.  doi: 10.1007/s11856-017-1482-2.  Google Scholar

[13]

D. Motreanu and V. D. Rǎdulescu, Variational and Non-Variational Methods in Nonlinear Analysis and Boundary Value Problems. Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht, 2003. ⅹⅱ+375 pp. doi: 10.1007/978-1-4757-6921-0.  Google Scholar

[14]

N. S. Papageorgiou and V. D. Rǎdulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479.  doi: 10.1016/j.jde.2014.01.010.  Google Scholar

[15]

N. S. Papageorgiou and V. D. Rǎdulescu, Multiplicity of solutions for resonant Neumann problems with an indefinite and unbounded potential, Trans. Amer. Math. Soc., 367 (2015), 8723-8756.  doi: 10.1090/S0002-9947-2014-06518-5.  Google Scholar

[16]

N. S. Papageorgiou and V. D. Rǎdulescu, Multiplicity theorems for nonlinear nonhomogeneous Robin problems, Rev. Mat. Iberoam., 33 (2017), 251-289.  doi: 10.4171/RMI/936.  Google Scholar

[17]

N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Multiple solutions for resonant problems of the Robin p-Laplacian plus an indefinite potential, Calc. Var. Partial Differential Equations, 56 (2017), Art. 63, 23 pp. doi: 10.1007/s00526-017-1164-2.  Google Scholar

[18]

N. S. PapageorgiouV. D. Rǎdulescu and D. D. Repovš, Robin problems with a general potential and a superlinear reaction, J. Differential Equations, 263 (2017), 3244-3290.  doi: 10.1016/j.jde.2017.04.032.  Google Scholar

[19]

N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Modern Nonlinear Analysis: Theory and Applications, Springer Monographs in Mathematics, Springer-Verlag, Heidelberg, 2018 (in press). Google Scholar

[20]

P. Pucci and V. D. Rǎdulescu, Remarks on a polyharmonic eigenvalue problem, C. R. Math. Acad. Sci. Paris, 348 (2010), 161-164.  doi: 10.1016/j.crma.2010.01.013.  Google Scholar

[21]

P. Pucci and V. D. Rǎdulescu, The impact of the mountain pass theory in nonlinear analysis: A mathematical survey., Boll. Unione Mat. Ital., 3 (2010), 543-582.   Google Scholar

[22]

P. Pucci and V. D. Rǎdulescu, Combined effects in quasilinear elliptic problems with lack of compactness, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 22 (2011), 189-205.  doi: 10.4171/RLM/595.  Google Scholar

[23]

P. Pucci, V. D. Rǎdulescu and H. Weinberger, James Serrin. Selected Papers, 2 volumes, 1718 pages, Contemporary Mathematicians, Birkhäuser, Basel, 2014.  Google Scholar

[24]

V. D. Rǎdulescu, Analyse de quelques problèmes liés à l'équation de Ginzburg-Landau, PhD Thesis, 29 June 1995, https://www.theses.fr/1995PA066189. Google Scholar

[25]

V. D. Rǎdulescu, Habilitation à diriger des recherches at the Université Pierre et Marie Curie (Paris Ⅵ) with the mémoire: Analyse de quelques problèmes aux limites elliptiques non linéaires Habilitation à diriger des recherches at the Université Pierre et Marie Curie (Paris Ⅵ), 18 February 2003. Google Scholar

[26]

V. D. Rǎdulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods, Contemporary Mathematics and Its Applications, 6. Hindawi Publishing Corporation, New York, 2008. ⅹⅱ+192 pp. doi: 10.1155/9789774540394.  Google Scholar

[27]

V. D. Rǎdulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal., 121 (2015), 336-369.  doi: 10.1016/j.na.2014.11.007.  Google Scholar

[28]

V. D. Rǎdulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015. xxi+301 pp. doi: 10.1201/b18601.  Google Scholar

[29]

V. D. RǎdulescuM. Xiang and B. Zhang, Existence of solutions for perturbed fractional p-Laplacian equations, J. Differential Equations, 260 (2016), 1392-1413.  doi: 10.1016/j.jde.2015.09.028.  Google Scholar

[30]

V. D. RǎdulescuM. Xiang and B. Zhang, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian, Nonlinearity, 29 (2016), 3186-3205.  doi: 10.1088/0951-7715/29/10/3186.  Google Scholar

[31]

J. Serrin, E. Mitidieri and V. D. Rǎdulescu, Recent Trends in Nonlinear Partial Differential Equations I: Evolution Problems, Contemporary Mathematics, vol. 594, American Mathematical Society, 307 pp., 2013. Google Scholar

[32]

J. Serrin, E. Mitidieri and V. D. Rǎdulescu, Recent Trends in Nonlinear Partial Differential Equations II: Stationary Problems, Contemporary Mathematics, vol. 595, American Mathematical Society, 340 pp., 2013. doi: 10.1090/conm/595.  Google Scholar

[1]

Barbora Benešová, Martin Kružík. Tomáš Roubíček celebrates his sixtieth anniversary. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : ⅰ-ⅲ. doi: 10.3934/dcdss.201706i

[2]

Philip C. Kutzko. To Carlos on his sixtieth birthday: Greetings from your friends in Iowa. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1609-1610. doi: 10.3934/mbe.2013.10.1609

[3]

Luis Alberto Fernández, Mariano Mateos, Cecilia Pola, Fredi Tröltzsch, Enrique Zuazua. Preface: A tribute to professor Eduardo Casas on his 60th birthday. Mathematical Control & Related Fields, 2018, 8 (1) : i-ii. doi: 10.3934/mcrf.201801i

[4]

Hongwei Lou, Qi Lü, Gengsheng Wang, Xu Zhang. Preface: A tribute to professor Jiongmin Yong on his 60th birthday. Mathematical Control & Related Fields, 2018, 8 (3&4) : ⅰ-ⅰ. doi: 10.3934/mcrf.201803i

[5]

Hervé Le Dret, Vicenţiu D. Rădulescu, Roderick S. C. Wong. A tribute to Professor Philippe G. Ciarlet on his 70th birthday. Communications on Pure & Applied Analysis, 2009, 8 (1) : 1-4. doi: 10.3934/cpaa.2009.8.1

[6]

Hal L. Smith. Tribute to Horst R. Thieme on the occasion of his 60th birthday. Mathematical Biosciences & Engineering, 2010, 7 (1) : i-iii. doi: 10.3934/mbe.2010.7.1i

[7]

Xiaodong Hu. Biography of Professor Jiye Han. Journal of Industrial & Management Optimization, 2005, 1 (2) : 149-152. doi: 10.3934/jimo.2005.1.149

[8]

Roger Temam. Mark Vishik and his work. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : i-vi. doi: 10.3934/dcds.2004.10.1i

[9]

Marco Castrillón López, Antonio Fernández, César Rodrigo. A special tribute to Professor Pedro L. García. Journal of Geometric Mechanics, 2013, 5 (4) : i-iii. doi: 10.3934/jgm.2013.5.4i

[10]

Alexander A. Kovalevsky, Andrey Shishkov. To the memory of Professor Igor V. Skrypnik. Communications on Pure & Applied Analysis, 2013, 12 (4) : i-v. doi: 10.3934/cpaa.2013.12.4i

[11]

Bruce Kitchens, Brian Marcus, Benjamin Weiss. Roy Adler and the lasting impact of his work. Journal of Modern Dynamics, 2018, 13: ⅴ-ⅹ. doi: 10.3934/jmd.2018v

[12]

Jin Ma, Shige Peng, Jiongmin Yong, Xunyu Zhou. A biographical note and tribute to xunjing li on his 80th birthday. Mathematical Control & Related Fields, 2015, 5 (3) : i-iii. doi: 10.3934/mcrf.2015.5.3i

[13]

Vladimir V. Marchenko, Klavdii V. Maslov, Dmitry Shepelsky, V. V. Zhikov. E.Ya.Khruslov. On the occasion of his 70th birthday. Networks & Heterogeneous Media, 2008, 3 (3) : 647-650. doi: 10.3934/nhm.2008.3.647

[14]

Goong Chen. David L. Russell and a survey of his mathematical work. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1265-1277. doi: 10.3934/dcdsb.2010.14.1265

[15]

Kung-Ching Chang. In memory of professor Rouhuai Wang (1924-2001): A pioneering Chinese researcher in partial differential equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 571-575. doi: 10.3934/dcds.2016.36.571

[16]

Pierluigi Colli, Gianni Gilardi, Dietmar Hömberg, Pavel Krejčí, Elisabetta Rocca. Preface: Special issue dedicated to Jürgen Sprekels on the occasion of his 65th birthday. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : i-ii. doi: 10.3934/dcds.2015.35.6i

[17]

Henk W. Broer, Heinz Hanssmann. A Galilean dance 1:2:4 resonant periodic motions and their librations of Jupiter and his Galilean moons. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-17. doi: 10.3934/dcdss.2020062

[18]

Victoria Rayskin. Homoclinic tangencies in $R^n$. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 465-480. doi: 10.3934/dcds.2005.12.465

[19]

J. Becker, M. Ferreira, B.M.P.M. Oliveira, A.A. Pinto. R&d dynamics. Conference Publications, 2013, 2013 (special) : 61-68. doi: 10.3934/proc.2013.2013.61

[20]

Milton Ko. Rényi entropy and recurrence. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2403-2421. doi: 10.3934/dcds.2013.33.2403

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (120)
  • HTML views (116)
  • Cited by (0)

[Back to Top]