-
Previous Article
The first integral method for two fractional non-linear biological models
- DCDS-S Home
- This Issue
-
Next Article
Modeling the transmission dynamics of avian influenza with saturation and psychological effect
Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative
Mehmet Akif Ersoy University, Department of Mathematics, Faculty of Sciences, 15100, Burdur, Turkey |
A nonlinear system of two fractional nonlinear differential equations with Atangana-Baleanu derivative is considered in this work. General conditions under which a system solution exists and unique are presented using the fixed-point theorem method. The well-established numerical scheme is used to solve the system of equations. A numerical analysis is presented to secure the stability and convergence of the used numerical scheme.
References:
[1] |
A. A. M. Arafa, S. Z. Rida and H. Mohamed,
Homotopy analysis method for solving biological population model, Communications in Theoretical Physics, 56 (2011), 797-800.
doi: 10.1088/0253-6102/56/5/01. |
[2] |
A. Atangana and D. Baleanu,
New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A. |
[3] |
A. Atangana and I. Koca,
Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89 (2016), 447-454.
doi: 10.1016/j.chaos.2016.02.012. |
[4] |
A. Atangana and I. Koca,
On the new fractional derivative and application to Nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications, 9 (2016), 2467-2480.
doi: 10.22436/jnsa.009.05.46. |
[5] |
A. Atangana,
On the new fractional derivative and application to nonlinear fisher's reaction-diffusion equation, Appl Math Comput, 273 (2016), 948-956.
doi: 10.1016/j.amc.2015.10.021. |
[6] |
M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. Google Scholar |
[7] |
A. M. A. El-Sayed, A. Elsaid, I. L. El-Kalla and D. Hammad,
A homotopy perturbation technique for solving partial differential equations of fractional order in finite domains, Applied Mathematics and Computation, 218 (2012), 8329-8340.
doi: 10.1016/j.amc.2012.01.057. |
[8] |
A. K. Golmankhaneh, A. K. Golmankhaneh and D. Baleanu, On nonlinear fractional KleinGordon equation, Signal Processing, 91 (2011), 446-451. Google Scholar |
[9] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006. |
[10] |
J. Losada and J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr Fract Differ Appl, 1 (2015), 87-92. Google Scholar |
[11] |
I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional Calculus and Applied Analysis, 5 (2002), 367-386. Google Scholar |
[12] |
B. Sambandham and A. Vatsala, Basic results for sequential caputo fractional differential equations, Mathematics, 3 (2015), 76-91. Google Scholar |
[13] |
T. Yamamoto and X. Chen,
An existence and nonexistence theorem for solutions of nonlinear systems and its application to algebraic equations, Journal of Computational and Applied Mathematics, 30 (1990), 87-97.
doi: 10.1016/0377-0427(90)90008-N. |
show all references
References:
[1] |
A. A. M. Arafa, S. Z. Rida and H. Mohamed,
Homotopy analysis method for solving biological population model, Communications in Theoretical Physics, 56 (2011), 797-800.
doi: 10.1088/0253-6102/56/5/01. |
[2] |
A. Atangana and D. Baleanu,
New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A. |
[3] |
A. Atangana and I. Koca,
Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89 (2016), 447-454.
doi: 10.1016/j.chaos.2016.02.012. |
[4] |
A. Atangana and I. Koca,
On the new fractional derivative and application to Nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications, 9 (2016), 2467-2480.
doi: 10.22436/jnsa.009.05.46. |
[5] |
A. Atangana,
On the new fractional derivative and application to nonlinear fisher's reaction-diffusion equation, Appl Math Comput, 273 (2016), 948-956.
doi: 10.1016/j.amc.2015.10.021. |
[6] |
M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. Google Scholar |
[7] |
A. M. A. El-Sayed, A. Elsaid, I. L. El-Kalla and D. Hammad,
A homotopy perturbation technique for solving partial differential equations of fractional order in finite domains, Applied Mathematics and Computation, 218 (2012), 8329-8340.
doi: 10.1016/j.amc.2012.01.057. |
[8] |
A. K. Golmankhaneh, A. K. Golmankhaneh and D. Baleanu, On nonlinear fractional KleinGordon equation, Signal Processing, 91 (2011), 446-451. Google Scholar |
[9] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006. |
[10] |
J. Losada and J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr Fract Differ Appl, 1 (2015), 87-92. Google Scholar |
[11] |
I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional Calculus and Applied Analysis, 5 (2002), 367-386. Google Scholar |
[12] |
B. Sambandham and A. Vatsala, Basic results for sequential caputo fractional differential equations, Mathematics, 3 (2015), 76-91. Google Scholar |
[13] |
T. Yamamoto and X. Chen,
An existence and nonexistence theorem for solutions of nonlinear systems and its application to algebraic equations, Journal of Computational and Applied Mathematics, 30 (1990), 87-97.
doi: 10.1016/0377-0427(90)90008-N. |
[1] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[2] |
Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435 |
[3] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[4] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
[5] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[6] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[7] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[8] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[9] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[10] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[11] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021003 |
[12] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
[13] |
Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020449 |
[14] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[15] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[16] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[17] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[18] |
Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 763-782. doi: 10.3934/cpaa.2020289 |
[19] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[20] |
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021001 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]