June  2019, 12(3): 475-486. doi: 10.3934/dcdss.2019031

Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative

Mehmet Akif Ersoy University, Department of Mathematics, Faculty of Sciences, 15100, Burdur, Turkey

Received  June 2017 Revised  September 2017 Published  September 2018

A nonlinear system of two fractional nonlinear differential equations with Atangana-Baleanu derivative is considered in this work. General conditions under which a system solution exists and unique are presented using the fixed-point theorem method. The well-established numerical scheme is used to solve the system of equations. A numerical analysis is presented to secure the stability and convergence of the used numerical scheme.

Citation: Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031
References:
[1]

A. A. M. ArafaS. Z. Rida and H. Mohamed, Homotopy analysis method for solving biological population model, Communications in Theoretical Physics, 56 (2011), 797-800.  doi: 10.1088/0253-6102/56/5/01.  Google Scholar

[2]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[3]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[4]

A. Atangana and I. Koca, On the new fractional derivative and application to Nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications, 9 (2016), 2467-2480.  doi: 10.22436/jnsa.009.05.46.  Google Scholar

[5]

A. Atangana, On the new fractional derivative and application to nonlinear fisher's reaction-diffusion equation, Appl Math Comput, 273 (2016), 948-956.  doi: 10.1016/j.amc.2015.10.021.  Google Scholar

[6]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85.   Google Scholar

[7]

A. M. A. El-SayedA. ElsaidI. L. El-Kalla and D. Hammad, A homotopy perturbation technique for solving partial differential equations of fractional order in finite domains, Applied Mathematics and Computation, 218 (2012), 8329-8340.  doi: 10.1016/j.amc.2012.01.057.  Google Scholar

[8]

A. K. GolmankhanehA. K. Golmankhaneh and D. Baleanu, On nonlinear fractional KleinGordon equation, Signal Processing, 91 (2011), 446-451.   Google Scholar

[9]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006.  Google Scholar

[10]

J. Losada and J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr Fract Differ Appl, 1 (2015), 87-92.   Google Scholar

[11]

I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional Calculus and Applied Analysis, 5 (2002), 367-386.   Google Scholar

[12]

B. Sambandham and A. Vatsala, Basic results for sequential caputo fractional differential equations, Mathematics, 3 (2015), 76-91.   Google Scholar

[13]

T. Yamamoto and X. Chen, An existence and nonexistence theorem for solutions of nonlinear systems and its application to algebraic equations, Journal of Computational and Applied Mathematics, 30 (1990), 87-97.  doi: 10.1016/0377-0427(90)90008-N.  Google Scholar

show all references

References:
[1]

A. A. M. ArafaS. Z. Rida and H. Mohamed, Homotopy analysis method for solving biological population model, Communications in Theoretical Physics, 56 (2011), 797-800.  doi: 10.1088/0253-6102/56/5/01.  Google Scholar

[2]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[3]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[4]

A. Atangana and I. Koca, On the new fractional derivative and application to Nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications, 9 (2016), 2467-2480.  doi: 10.22436/jnsa.009.05.46.  Google Scholar

[5]

A. Atangana, On the new fractional derivative and application to nonlinear fisher's reaction-diffusion equation, Appl Math Comput, 273 (2016), 948-956.  doi: 10.1016/j.amc.2015.10.021.  Google Scholar

[6]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85.   Google Scholar

[7]

A. M. A. El-SayedA. ElsaidI. L. El-Kalla and D. Hammad, A homotopy perturbation technique for solving partial differential equations of fractional order in finite domains, Applied Mathematics and Computation, 218 (2012), 8329-8340.  doi: 10.1016/j.amc.2012.01.057.  Google Scholar

[8]

A. K. GolmankhanehA. K. Golmankhaneh and D. Baleanu, On nonlinear fractional KleinGordon equation, Signal Processing, 91 (2011), 446-451.   Google Scholar

[9]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006.  Google Scholar

[10]

J. Losada and J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr Fract Differ Appl, 1 (2015), 87-92.   Google Scholar

[11]

I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional Calculus and Applied Analysis, 5 (2002), 367-386.   Google Scholar

[12]

B. Sambandham and A. Vatsala, Basic results for sequential caputo fractional differential equations, Mathematics, 3 (2015), 76-91.   Google Scholar

[13]

T. Yamamoto and X. Chen, An existence and nonexistence theorem for solutions of nonlinear systems and its application to algebraic equations, Journal of Computational and Applied Mathematics, 30 (1990), 87-97.  doi: 10.1016/0377-0427(90)90008-N.  Google Scholar

[1]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[2]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[3]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[4]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[5]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[6]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[7]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[8]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[9]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[10]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[11]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[12]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[13]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[14]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[15]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[16]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[17]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[18]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 763-782. doi: 10.3934/cpaa.2020289

[19]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[20]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (418)
  • HTML views (209)
  • Cited by (2)

Other articles
by authors

[Back to Top]