• Previous Article
    On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation
  • DCDS-S Home
  • This Issue
  • Next Article
    Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative
June  2019, 12(3): 487-502. doi: 10.3934/dcdss.2019032

The first integral method for two fractional non-linear biological models

1. 

Department of Physics, Adeyemi College of Education, Ondo, Nigeria

2. 

Department of Mathematics Education, University of Education, Winneba, (Kumasi campus), Ghana

3. 

Department of Physical Sciences, Al-Hikmah University, Ilorin, Nigeria

* Corresponding author: olusolakolebaje2008@gmail.com

Received  June 2017 Revised  November 2017 Published  September 2018

Travelling wave solutions of the space and time fractional models for non-linear blood flow in large vessels and Deoxyribonucleic acid (DNA) molecule dynamics defined in the sense of Jumarie's modified Riemann-Liouville derivative via the first integral method are presented in this study. A fractional complex transformation was applied to turn the fractional biological models into an equivalent integer order ordinary differential equation. The validity of the solutions to the fractional biological models obtained with first integral method was achieved by putting them back into the models. We observed that introducing fractional order to the biological models changes the nature of the solution.

Citation: Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032
References:
[1]

S. Abbasbandy and A. Shirzadi, The first integral method for modified benjamin-bona-mahony equation, Communications in Nonlinear Science and Numerical Simulation, 15 (2010), 1759-1764.  doi: 10.1016/j.cnsns.2009.08.003.  Google Scholar

[2]

M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, Pa, USA, 1981.  Google Scholar

[3]

M. AgueroM. Najera and M. Carrillo, Non classic solitonic structures in dna vibrational dynamics, Int. J. Modern Phys. B., 22 (2008), 2571-2582.   Google Scholar

[4]

W. AlkaA. Goyal and C. N. Kumar, Nonlinear dynamics of DNA-Riccati generalized solitary wave solutions, Physics Letters A, 375 (2011), 480-483.  doi: 10.1016/j.physleta.2010.11.017.  Google Scholar

[5]

A. Bekir and O. Unsal, Analytic treatment of nonlinear evolution equations using first integral method, Pramana, 79 (2012), 3-17.  doi: 10.1007/s12043-012-0282-9.  Google Scholar

[6]

N. Bourbaki, Commutative Algebra, Addison-Wesley, Paris, 1972. Google Scholar

[7]

H. Demiray, Weakly nonlinear waves in a viscous fluid contained in a viscoelastic tube with variable cross-section, Eur J. Mech. A. Solid, 24 (2005), 337-347.  doi: 10.1016/j.euromechsol.2004.12.002.  Google Scholar

[8]

H. Demiray, Variable coefficient modified kdv equation in fluid-filled elastic tubes with stenosis: Solitary waves, Chaos, Solitons and Fractals, 42 (2009), 358-364.  doi: 10.1016/j.chaos.2008.12.014.  Google Scholar

[9]

T. R. Ding and C. Z. Li, Ordinary Differential Equations, Peking University Press, Peking, 1996. Google Scholar

[10]

B. Eliasson and P. K. Shukla, Formation and dynamics of finite amplitude localized pulses in elastic tubes, Phys. Rev. E. , 71 (2005), 067302. doi: 10.1103/PhysRevE.71.067302.  Google Scholar

[11]

E. Fan, Extended tanh-function method and its applications to nonlinear equations, Physics Letters A, 277 (2000), 212-218.  doi: 10.1016/S0375-9601(00)00725-8.  Google Scholar

[12]

E. G. Fan, Two new applications of the homogeneous balance method, Physics Letters A, 265 (2000), 353-357.  doi: 10.1016/S0375-9601(00)00010-4.  Google Scholar

[13]

Z. S. Feng, Exact solution to an approximate sine-gordon equation in (n+1)-dimensional space, Physics Letters A, 302 (2002), 64-76.  doi: 10.1016/S0375-9601(02)01114-3.  Google Scholar

[14]

X. GongJ. Tian and J. Wang, First integral method for an oscillator system, Electronic Journal of Differential Equations, 96 (2013), 1-12.   Google Scholar

[15]

Y. Hashimuze, Nonlinear pressure waves in a fluid-filled elastic tube, J. Phys. Soc. Jpn., 54 (1985), 3305-3312.   Google Scholar

[16]

J. H. He and X. H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons and Fractals, 30 (2006), 700-708.  doi: 10.1016/j.chaos.2006.03.020.  Google Scholar

[17]

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing, New Jersey, NJ, USA, 2000. doi: 10.1142/9789812817747.  Google Scholar

[18]

R. Hirota, Exact envelope-soliton solutions of a nonlinear wave equation, Journal of Mathematical Physics, 14 (1973), 805-809.  doi: 10.1063/1.1666399.  Google Scholar

[19]

A. J. M. JawadM. D. Petković and A. Biswas, Modified simple equation method for nonlinear evolution equations, Applied Mathematics and Computation, 217 (2010), 869-877.  doi: 10.1016/j.amc.2010.06.030.  Google Scholar

[20]

G. Jumarie, Modified riemann-liouville derivative and fractional taylor series of nondifferentiable functions further results, Computers and Mathematics with Applications, 51 (2006), 1367-1376.  doi: 10.1016/j.camwa.2006.02.001.  Google Scholar

[21]

G. Jumarie, Fractional partial differential equations and modified riemann-liouville derivative new methods for solution, Journal of Applied Mathematics and Computing, 24 (2007), 31-48.  doi: 10.1007/BF02832299.  Google Scholar

[22]

M. A. Knyazev and D. M. Knyazev, New kink-like solutions for nonlinear equation describing the dynamics of dna, Journal of Physical Studies, 16 (2012), 1001-1004.   Google Scholar

[23]

G. R. Kol and C. B. Tabi, Application of the g'/g expansion method to nonlinear blood flow in large vessels, IC, 26 (2010), 1-9.   Google Scholar

[24]

D. X. KongS. Y. Lou and J. Zeng, Nonlinear dynamics in a new double chain-model of DNA, Commun. Theor. Phys., 36 (2001), 737-742.   Google Scholar

[25]

Z. B. Li and J. H. He, Fractional complex transform for fractional differential equations, Mathematical and Computational Applications, 15 (2010), 970-973.   Google Scholar

[26]

W. Malfliet, The tanh method: A tool for solving certain classes of non-linear pdes, Mathematical Methods in the Applied Sciences, 28 (2005), 2031-2035.  doi: 10.1002/mma.650.  Google Scholar

[27]

V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, Germany, 1991. doi: 10.1007/978-3-662-00922-2.  Google Scholar

[28]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY, USA, 1993.  Google Scholar

[29]

M. R. Miura, Backlund Transformation, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[30]

S. Noubissie and P. Woafo, Dynamics of solitary blood waves in arteries with prostheses, Phys. Rev. E. , 67 (2003), 0419111. doi: 10.1103/PhysRevE.67.041911.  Google Scholar

[31]

K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974.  Google Scholar

[32]

M. Peyrard and A. Bishop, Statistical mechanics of a nonlinear model of dna denaturation, Phys. Rev. Lett., 62 (1989), 2755-2758.  doi: 10.1103/PhysRevLett.62.2755.  Google Scholar

[33]

K. R. Raslan, The first integral method for solving some important nonlinear partial differential equations, Nonlinear Dynamics, 53 (2008), 281-286.  doi: 10.1007/s11071-007-9262-x.  Google Scholar

[34]

C. Rogers and W. F. Shadwick, Backlund Transformation, Academic Press, New York, NY, USA, 1982. Google Scholar

[35]

M. L. WangX. Li and J. Zhang, The (frac(g'/g))-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Physics Letters A, 372 (2008), 417-423.  doi: 10.1016/j.physleta.2007.07.051.  Google Scholar

[36]

B. J. West, M. Bologna and P. Grigolini, Physics of Fractal Operators, Springer, New York, NY, USA, 2003. doi: 10.1007/978-0-387-21746-8.  Google Scholar

[37]

L. V. Yakushevich, Nonlinear dna dynamics: A new model, Physics Letters A, 136 (1989), 413-417.  doi: 10.1016/0375-9601(89)90425-8.  Google Scholar

[38]

C. T. Yan, A simple transformation for nonlinear waves, Physics Letters A, 224 (1996), 77-84.  doi: 10.1016/S0375-9601(96)00770-0.  Google Scholar

[39]

Z. Y. Yan and H. Q. Zhang, New explicit solitary wave solutions and periodic wave solutions for whitham-broer-kaup equation in shallow water, Physics Letters A, 285 (2001), 355-362.  doi: 10.1016/S0375-9601(01)00376-0.  Google Scholar

[40]

S. Yomosa, Solitary waves in large blood vessels, J. Phys. Soc. Jpn., 56 (1987), 506-520.  doi: 10.1143/JPSJ.56.506.  Google Scholar

[41]

E. M. E. Zayed, Traveling wave solutions for higher dimensional nonlinear evolution equations using the (g'/g)- expansion method, J. Phys. A, 42 (2009), 195202, 13 pp. doi: 10.1088/1751-8113/42/19/195202.  Google Scholar

[42]

E. M. E. Zayed, A note on the modified simple equation method applied to sharma-tasso-olver equation, Applied Mathematics and Computation, 218 (2011), 3962-3964.  doi: 10.1016/j.amc.2011.09.025.  Google Scholar

[43]

E. M. E. Zayed and A. H. Arnous, Many exact solutions for nonlinear dynamics of dna model using the generalized riccati equation mapping method, Scientific Research and Essays, 8 (2013), 340-346.   Google Scholar

[44]

E. M. E. Zayed and S. A. H. Ibrahim, Exact solutions of nonlinear evolution equations in mathematical physics using the modified simple equation method, Chinese Physics Letters, 29 2012. doi: 10.1088/0256-307X/29/6/060201.  Google Scholar

show all references

References:
[1]

S. Abbasbandy and A. Shirzadi, The first integral method for modified benjamin-bona-mahony equation, Communications in Nonlinear Science and Numerical Simulation, 15 (2010), 1759-1764.  doi: 10.1016/j.cnsns.2009.08.003.  Google Scholar

[2]

M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, Pa, USA, 1981.  Google Scholar

[3]

M. AgueroM. Najera and M. Carrillo, Non classic solitonic structures in dna vibrational dynamics, Int. J. Modern Phys. B., 22 (2008), 2571-2582.   Google Scholar

[4]

W. AlkaA. Goyal and C. N. Kumar, Nonlinear dynamics of DNA-Riccati generalized solitary wave solutions, Physics Letters A, 375 (2011), 480-483.  doi: 10.1016/j.physleta.2010.11.017.  Google Scholar

[5]

A. Bekir and O. Unsal, Analytic treatment of nonlinear evolution equations using first integral method, Pramana, 79 (2012), 3-17.  doi: 10.1007/s12043-012-0282-9.  Google Scholar

[6]

N. Bourbaki, Commutative Algebra, Addison-Wesley, Paris, 1972. Google Scholar

[7]

H. Demiray, Weakly nonlinear waves in a viscous fluid contained in a viscoelastic tube with variable cross-section, Eur J. Mech. A. Solid, 24 (2005), 337-347.  doi: 10.1016/j.euromechsol.2004.12.002.  Google Scholar

[8]

H. Demiray, Variable coefficient modified kdv equation in fluid-filled elastic tubes with stenosis: Solitary waves, Chaos, Solitons and Fractals, 42 (2009), 358-364.  doi: 10.1016/j.chaos.2008.12.014.  Google Scholar

[9]

T. R. Ding and C. Z. Li, Ordinary Differential Equations, Peking University Press, Peking, 1996. Google Scholar

[10]

B. Eliasson and P. K. Shukla, Formation and dynamics of finite amplitude localized pulses in elastic tubes, Phys. Rev. E. , 71 (2005), 067302. doi: 10.1103/PhysRevE.71.067302.  Google Scholar

[11]

E. Fan, Extended tanh-function method and its applications to nonlinear equations, Physics Letters A, 277 (2000), 212-218.  doi: 10.1016/S0375-9601(00)00725-8.  Google Scholar

[12]

E. G. Fan, Two new applications of the homogeneous balance method, Physics Letters A, 265 (2000), 353-357.  doi: 10.1016/S0375-9601(00)00010-4.  Google Scholar

[13]

Z. S. Feng, Exact solution to an approximate sine-gordon equation in (n+1)-dimensional space, Physics Letters A, 302 (2002), 64-76.  doi: 10.1016/S0375-9601(02)01114-3.  Google Scholar

[14]

X. GongJ. Tian and J. Wang, First integral method for an oscillator system, Electronic Journal of Differential Equations, 96 (2013), 1-12.   Google Scholar

[15]

Y. Hashimuze, Nonlinear pressure waves in a fluid-filled elastic tube, J. Phys. Soc. Jpn., 54 (1985), 3305-3312.   Google Scholar

[16]

J. H. He and X. H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons and Fractals, 30 (2006), 700-708.  doi: 10.1016/j.chaos.2006.03.020.  Google Scholar

[17]

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing, New Jersey, NJ, USA, 2000. doi: 10.1142/9789812817747.  Google Scholar

[18]

R. Hirota, Exact envelope-soliton solutions of a nonlinear wave equation, Journal of Mathematical Physics, 14 (1973), 805-809.  doi: 10.1063/1.1666399.  Google Scholar

[19]

A. J. M. JawadM. D. Petković and A. Biswas, Modified simple equation method for nonlinear evolution equations, Applied Mathematics and Computation, 217 (2010), 869-877.  doi: 10.1016/j.amc.2010.06.030.  Google Scholar

[20]

G. Jumarie, Modified riemann-liouville derivative and fractional taylor series of nondifferentiable functions further results, Computers and Mathematics with Applications, 51 (2006), 1367-1376.  doi: 10.1016/j.camwa.2006.02.001.  Google Scholar

[21]

G. Jumarie, Fractional partial differential equations and modified riemann-liouville derivative new methods for solution, Journal of Applied Mathematics and Computing, 24 (2007), 31-48.  doi: 10.1007/BF02832299.  Google Scholar

[22]

M. A. Knyazev and D. M. Knyazev, New kink-like solutions for nonlinear equation describing the dynamics of dna, Journal of Physical Studies, 16 (2012), 1001-1004.   Google Scholar

[23]

G. R. Kol and C. B. Tabi, Application of the g'/g expansion method to nonlinear blood flow in large vessels, IC, 26 (2010), 1-9.   Google Scholar

[24]

D. X. KongS. Y. Lou and J. Zeng, Nonlinear dynamics in a new double chain-model of DNA, Commun. Theor. Phys., 36 (2001), 737-742.   Google Scholar

[25]

Z. B. Li and J. H. He, Fractional complex transform for fractional differential equations, Mathematical and Computational Applications, 15 (2010), 970-973.   Google Scholar

[26]

W. Malfliet, The tanh method: A tool for solving certain classes of non-linear pdes, Mathematical Methods in the Applied Sciences, 28 (2005), 2031-2035.  doi: 10.1002/mma.650.  Google Scholar

[27]

V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, Germany, 1991. doi: 10.1007/978-3-662-00922-2.  Google Scholar

[28]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY, USA, 1993.  Google Scholar

[29]

M. R. Miura, Backlund Transformation, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[30]

S. Noubissie and P. Woafo, Dynamics of solitary blood waves in arteries with prostheses, Phys. Rev. E. , 67 (2003), 0419111. doi: 10.1103/PhysRevE.67.041911.  Google Scholar

[31]

K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974.  Google Scholar

[32]

M. Peyrard and A. Bishop, Statistical mechanics of a nonlinear model of dna denaturation, Phys. Rev. Lett., 62 (1989), 2755-2758.  doi: 10.1103/PhysRevLett.62.2755.  Google Scholar

[33]

K. R. Raslan, The first integral method for solving some important nonlinear partial differential equations, Nonlinear Dynamics, 53 (2008), 281-286.  doi: 10.1007/s11071-007-9262-x.  Google Scholar

[34]

C. Rogers and W. F. Shadwick, Backlund Transformation, Academic Press, New York, NY, USA, 1982. Google Scholar

[35]

M. L. WangX. Li and J. Zhang, The (frac(g'/g))-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Physics Letters A, 372 (2008), 417-423.  doi: 10.1016/j.physleta.2007.07.051.  Google Scholar

[36]

B. J. West, M. Bologna and P. Grigolini, Physics of Fractal Operators, Springer, New York, NY, USA, 2003. doi: 10.1007/978-0-387-21746-8.  Google Scholar

[37]

L. V. Yakushevich, Nonlinear dna dynamics: A new model, Physics Letters A, 136 (1989), 413-417.  doi: 10.1016/0375-9601(89)90425-8.  Google Scholar

[38]

C. T. Yan, A simple transformation for nonlinear waves, Physics Letters A, 224 (1996), 77-84.  doi: 10.1016/S0375-9601(96)00770-0.  Google Scholar

[39]

Z. Y. Yan and H. Q. Zhang, New explicit solitary wave solutions and periodic wave solutions for whitham-broer-kaup equation in shallow water, Physics Letters A, 285 (2001), 355-362.  doi: 10.1016/S0375-9601(01)00376-0.  Google Scholar

[40]

S. Yomosa, Solitary waves in large blood vessels, J. Phys. Soc. Jpn., 56 (1987), 506-520.  doi: 10.1143/JPSJ.56.506.  Google Scholar

[41]

E. M. E. Zayed, Traveling wave solutions for higher dimensional nonlinear evolution equations using the (g'/g)- expansion method, J. Phys. A, 42 (2009), 195202, 13 pp. doi: 10.1088/1751-8113/42/19/195202.  Google Scholar

[42]

E. M. E. Zayed, A note on the modified simple equation method applied to sharma-tasso-olver equation, Applied Mathematics and Computation, 218 (2011), 3962-3964.  doi: 10.1016/j.amc.2011.09.025.  Google Scholar

[43]

E. M. E. Zayed and A. H. Arnous, Many exact solutions for nonlinear dynamics of dna model using the generalized riccati equation mapping method, Scientific Research and Essays, 8 (2013), 340-346.   Google Scholar

[44]

E. M. E. Zayed and S. A. H. Ibrahim, Exact solutions of nonlinear evolution equations in mathematical physics using the modified simple equation method, Chinese Physics Letters, 29 2012. doi: 10.1088/0256-307X/29/6/060201.  Google Scholar

Figure 1.  Figure showing $P(z,t)$ with $\chi = z^{\sigma}/\Gamma(1+\sigma)+2 t^{\gamma}/\Gamma(1+\gamma)\sqrt{1-4 B_0^2}$ and $0\leq z, t \leq 20$ for (a) $\sigma = 1$ , $\gamma = 1$ , (b) $\sigma = 1$ , $\gamma = 0.5$ , (c) $\sigma = 0.5$ , $\gamma = 1$ , (d) $\sigma = 0.5$ , $\gamma = 0.5$
Figure 2.  Figure showing $P(z,t)$ with $\chi = z^{\sigma}/\Gamma(1+\sigma)-2 t^{\gamma}/\Gamma(1+\gamma)\sqrt{1-4 B_0^2}$ and $0\leq z, t \leq 20$ for (a) $\sigma = 1$ , $\gamma = 1$ , (b) $\sigma = 1$ , $\gamma = 0.5$ , (c) $\sigma = 0.5$ , $\gamma = 1$ , (d) $\sigma = 0.5$ , $\gamma = 0.5$
Figure 3.  Figure showing $\phi(x,t)$ (Eq. 65) with $B_0, l, k, Y, \lambda, \mu = 1$ , $h = 3.33$ , $\rho = 0.85$ , and $0\leq x, t \leq 5$ for (a) $\sigma = 1$ , $\gamma = 1$ , (b) $\sigma = 1$ , $\gamma = 0.5$ , (c) $\sigma = 0.5$ , $\gamma = 1$ , (d) $\sigma = 0.5$ , $\gamma = 0.5$
Figure 4.  Figure showing $\phi(x,t)$ (Eq. 66) with $B_0, l, k, Y, \lambda, \mu = 1$ , $h = 3.33$ , $\rho = 0.85$ , and $0\leq x, t \leq 5$ for (a) $\sigma = 1$ , $\gamma = 1$ , (b) $\sigma = 1$ , $\gamma = 0.5$ , (c) $\sigma = 0.5$ , $\gamma = 1$ , (d) $\sigma = 0.5$ , $\gamma = 0.5$
Figure 5.  Figure showing $\phi(x,t)$ (Eq. 78) with $B_0, l, k, Y, \lambda, \mu = 1$ , $h = 3.33$ , $\rho = 0.85$ , and $0\leq x, t \leq 5$ for (a) $\sigma = 1$ , $\gamma = 1$ , (b) $\sigma = 1$ , $\gamma = 0.5$ , (c) $\sigma = 0.5$ , $\gamma = 1$ , (d) $\sigma = 0.5$ , $\gamma = 0.5$
Figure 6.  Figure showing $\phi(x,t)$ (Eq. 79) with $B_0, l, k, Y, \lambda, \mu = 1$ , $h = 3.33$ , $\rho = 0.85$ , and $0\leq x, t \leq 5$ for (a) $\sigma = 1$ , $\gamma = 1$ , (b) $\sigma = 1$ , $\gamma = 0.5$ , (c) $\sigma = 0.5$ , $\gamma = 1$ , (d) $\sigma = 0.5$ , $\gamma = 0.5$
[1]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[2]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[3]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021001

[4]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[5]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[6]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[7]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[8]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[9]

Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094

[10]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[11]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[12]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[13]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[14]

Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021007

[15]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020402

[16]

Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168

[17]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[18]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[19]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[20]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (188)
  • HTML views (269)
  • Cited by (1)

[Back to Top]