In this paper, an optimal control problem for Schrödinger equation with complex coefficient which contains gradient is examined. A theorem is given that states the existence and uniqueness of the solution of the initial-boundary value problem for Schrödinger equation. Then for the solution of the optimal control problem, two different cases are investigated. Firstly, it is shown that the optimal control problem has a unique solution for $α >0$ on a dense subset $G$ on the space $H$ which contains the measurable square integrable functions on $\left(0,l\right)$ and secondly the optimal control problem has at least one solution for any $α ≥ 0$ on the space $H$.
Citation: |
A. Abdon
and D. Baleanu
, Application of Fixed Point Theorem for Stability Analysis of a Nonlinear Schrodinger with Caputo-Liouville Derivative, Filomat, 31 (2017)
, 2243-2248.
doi: 10.2298/FIL1708243A.![]() ![]() ![]() |
|
N. Y. Aksoy
, G. Yagubov
and B. Yildiz
, The finite difference approximations of the optimal control problem for nonlinear Schrodinger equation, International Journal of Mathematical Modeling and Numerical Optimization, 3 (2012)
, 158-183.
![]() |
|
A. G. Butkovsky and Yu. I. Samoylenko,
Control of Quantum-Mechanical Process and Systems, Kluwer Academic, Dordrecht, 1990.
doi: 10.1007/978-94-009-1994-5.![]() ![]() ![]() |
|
M. Goebel
, On Existence of optimal control, Math. Nachr., 53 (1979)
, 67-73.
doi: 10.1002/mana.19790930106.![]() ![]() ![]() |
|
D. N. Hao, Optimal control of quantum systems, Avtomatika i Telemechanika, 2 (1986), 14-21; (Russian)Automation and Remote Control, 47 (1986), 162-168.
![]() |
|
K. Iosida,
Functional Analysis, Mir, 1967, (in Russian).
![]() ![]() |
|
A. D. Iskenderov and G. Ya. Yagubov, A variational method for solving inverse problem of determining the quantum mechanical potential, (Russian)Sov. Math. Doklady, 303 (1988), 1044-1048; Am. Math. Soc. , 38 (1989), 637-641.
![]() ![]() |
|
A. D. Iskenderov
and G. Ya. Yagubov
, Optimal control of nonlinear quantum mechanical systems, Autom.Telemech., 12 (1989)
, 27-38.
![]() ![]() |
|
A. D. Iskenderov
, Definition of potantial in nonstationary Schrodinger equation, Mathematical Simulation and Optimal Control Problems, (2001)
, 6-36.
![]() |
|
A. D. Iskenderov
, On variational formulations of multidimensional inverse problems of mathematical physics, Dokl. Akad. Nauk SSSR, 274 (1984)
, 531-533.
![]() ![]() |
|
A. D. Iskenderov
and N. M. Makhmudov
, Optimal control of a quantum mechanical system with the Lions quality criterion, Izv. Akad. Nauk Azerb. Ser. Fiz.-Tekh. Mat. Nauk, 16 (1995)
, 30-35.
![]() ![]() |
|
O. A. Ladyzhenskaya,
Boundary Value Problems of Mathematical Physics, Nauka, Moscow, 1973 (in Russian).
![]() ![]() |
|
J. L. Lions,
Contrôle Des Systèmes Distribués Singuliers, Gauthier Villars, Paris, 1983.
![]() ![]() |
|
J. L. Lions,
Optimal Control of Systems Governed by Partial Differential Equations, Springer, New York, 1971.
![]() ![]() |
|
N. M. Makhmudov
, A difference method for solving an optimal control problem for the Schrödinger equation with the Lions quality criterion, Izv. Chelyabinsk. Nauchn. Tsentra, 3 (2009)
, 1-6 (in Russian).
![]() ![]() |
|
N. M. Makhmudov
, On an optimal control problem for the Schrödinger equation with a real-valued coefficient, Izv. Vyssh. Uchebn. Zaved. Mat., 11 (2010)
, 31-40 (in Russian).
doi: 10.3103/S1066369X10110034.![]() ![]() ![]() |
|
A. N. Tikhonov and V. Y. Arsenin,
Solution of Ill-posed Problems, Winston & Sons, Washington, 1977.
![]() ![]() |
|
G. Yagubov
, F. Toyoglu
and M. Subasi
, An optimal control problem for two-dimensional Schrodinger Equation, Applied Mathematics and Computation, 218 (2012)
, 6177-6187.
doi: 10.1016/j.amc.2011.12.028.![]() ![]() ![]() |
|
G. Y. Yagubov
and M. A. Musayeva
, On the identification problem for nonlinear Schrodinger equation, Differential Equation, 3 (1997)
, 1691-1698 (in Russian).
![]() ![]() |