    June  2019, 12(3): 503-512. doi: 10.3934/dcdss.2019033

## On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation

 1 Iǧdır University, Faculty of Science and Art, Department of Mathematics, Iǧdır, Turkey 2 Kafkas University, Faculty of Science and Art, Department of Mathematics, Kars, Turkey 3 Atatürk University, Faculty of Science, Department of Mathematics, Erzurum, Turkey

* Corresponding author: gokce.kucuk@igdir.edu.tr

Received  March 2017 Revised  July 2017 Published  September 2018

In this paper, an optimal control problem for Schrödinger equation with complex coefficient which contains gradient is examined. A theorem is given that states the existence and uniqueness of the solution of the initial-boundary value problem for Schrödinger equation. Then for the solution of the optimal control problem, two different cases are investigated. Firstly, it is shown that the optimal control problem has a unique solution for $α >0$ on a dense subset $G$ on the space $H$ which contains the measurable square integrable functions on $\left(0,l\right)$ and secondly the optimal control problem has at least one solution for any $α ≥ 0$ on the space $H$.

Citation: Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033
##### References:
  A. Abdon and D. Baleanu, Application of Fixed Point Theorem for Stability Analysis of a Nonlinear Schrodinger with Caputo-Liouville Derivative, Filomat, 31 (2017), 2243-2248.  doi: 10.2298/FIL1708243A.  Google Scholar  N. Y. Aksoy, G. Yagubov and B. Yildiz, The finite difference approximations of the optimal control problem for nonlinear Schrodinger equation, International Journal of Mathematical Modeling and Numerical Optimization, 3 (2012), 158-183.   Google Scholar  A. G. Butkovsky and Yu. I. Samoylenko, Control of Quantum-Mechanical Process and Systems, Kluwer Academic, Dordrecht, 1990. doi: 10.1007/978-94-009-1994-5.  Google Scholar  M. Goebel, On Existence of optimal control, Math. Nachr., 53 (1979), 67-73.  doi: 10.1002/mana.19790930106.  Google Scholar  D. N. Hao, Optimal control of quantum systems, Avtomatika i Telemechanika, 2 (1986), 14-21; (Russian)Automation and Remote Control, 47 (1986), 162-168. Google Scholar  K. Iosida, Functional Analysis, Mir, 1967, (in Russian). Google Scholar  A. D. Iskenderov and G. Ya. Yagubov, A variational method for solving inverse problem of determining the quantum mechanical potential, (Russian)Sov. Math. Doklady, 303 (1988), 1044-1048; Am. Math. Soc. , 38 (1989), 637-641. Google Scholar  A. D. Iskenderov and G. Ya. Yagubov, Optimal control of nonlinear quantum mechanical systems, Autom.Telemech., 12 (1989), 27-38. Google Scholar  A. D. Iskenderov, Definition of potantial in nonstationary Schrodinger equation, Mathematical Simulation and Optimal Control Problems, (2001), 6-36.   Google Scholar  A. D. Iskenderov, On variational formulations of multidimensional inverse problems of mathematical physics, Dokl. Akad. Nauk SSSR, 274 (1984), 531-533. Google Scholar  A. D. Iskenderov and N. M. Makhmudov, Optimal control of a quantum mechanical system with the Lions quality criterion, Izv. Akad. Nauk Azerb. Ser. Fiz.-Tekh. Mat. Nauk, 16 (1995), 30-35. Google Scholar  O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Nauka, Moscow, 1973 (in Russian). Google Scholar  J. L. Lions, Contrôle Des Systèmes Distribués Singuliers, Gauthier Villars, Paris, 1983. Google Scholar  J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, New York, 1971. Google Scholar  N. M. Makhmudov, A difference method for solving an optimal control problem for the Schrödinger equation with the Lions quality criterion, Izv. Chelyabinsk. Nauchn. Tsentra, 3 (2009), 1-6 (in Russian). Google Scholar  N. M. Makhmudov, On an optimal control problem for the Schrödinger equation with a real-valued coefficient, Izv. Vyssh. Uchebn. Zaved. Mat., 11 (2010), 31-40 (in Russian).  doi: 10.3103/S1066369X10110034.  Google Scholar  A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-posed Problems, Winston & Sons, Washington, 1977. Google Scholar  G. Yagubov, F. Toyoglu and M. Subasi, An optimal control problem for two-dimensional Schrodinger Equation, Applied Mathematics and Computation, 218 (2012), 6177-6187.  doi: 10.1016/j.amc.2011.12.028.  Google Scholar  G. Y. Yagubov and M. A. Musayeva, On the identification problem for nonlinear Schrodinger equation, Differential Equation, 3 (1997), 1691-1698 (in Russian). Google Scholar

show all references

##### References:
  A. Abdon and D. Baleanu, Application of Fixed Point Theorem for Stability Analysis of a Nonlinear Schrodinger with Caputo-Liouville Derivative, Filomat, 31 (2017), 2243-2248.  doi: 10.2298/FIL1708243A.  Google Scholar  N. Y. Aksoy, G. Yagubov and B. Yildiz, The finite difference approximations of the optimal control problem for nonlinear Schrodinger equation, International Journal of Mathematical Modeling and Numerical Optimization, 3 (2012), 158-183.   Google Scholar  A. G. Butkovsky and Yu. I. Samoylenko, Control of Quantum-Mechanical Process and Systems, Kluwer Academic, Dordrecht, 1990. doi: 10.1007/978-94-009-1994-5.  Google Scholar  M. Goebel, On Existence of optimal control, Math. Nachr., 53 (1979), 67-73.  doi: 10.1002/mana.19790930106.  Google Scholar  D. N. Hao, Optimal control of quantum systems, Avtomatika i Telemechanika, 2 (1986), 14-21; (Russian)Automation and Remote Control, 47 (1986), 162-168. Google Scholar  K. Iosida, Functional Analysis, Mir, 1967, (in Russian). Google Scholar  A. D. Iskenderov and G. Ya. Yagubov, A variational method for solving inverse problem of determining the quantum mechanical potential, (Russian)Sov. Math. Doklady, 303 (1988), 1044-1048; Am. Math. Soc. , 38 (1989), 637-641. Google Scholar  A. D. Iskenderov and G. Ya. Yagubov, Optimal control of nonlinear quantum mechanical systems, Autom.Telemech., 12 (1989), 27-38. Google Scholar  A. D. Iskenderov, Definition of potantial in nonstationary Schrodinger equation, Mathematical Simulation and Optimal Control Problems, (2001), 6-36.   Google Scholar  A. D. Iskenderov, On variational formulations of multidimensional inverse problems of mathematical physics, Dokl. Akad. Nauk SSSR, 274 (1984), 531-533. Google Scholar  A. D. Iskenderov and N. M. Makhmudov, Optimal control of a quantum mechanical system with the Lions quality criterion, Izv. Akad. Nauk Azerb. Ser. Fiz.-Tekh. Mat. Nauk, 16 (1995), 30-35. Google Scholar  O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Nauka, Moscow, 1973 (in Russian). Google Scholar  J. L. Lions, Contrôle Des Systèmes Distribués Singuliers, Gauthier Villars, Paris, 1983. Google Scholar  J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, New York, 1971. Google Scholar  N. M. Makhmudov, A difference method for solving an optimal control problem for the Schrödinger equation with the Lions quality criterion, Izv. Chelyabinsk. Nauchn. Tsentra, 3 (2009), 1-6 (in Russian). Google Scholar  N. M. Makhmudov, On an optimal control problem for the Schrödinger equation with a real-valued coefficient, Izv. Vyssh. Uchebn. Zaved. Mat., 11 (2010), 31-40 (in Russian).  doi: 10.3103/S1066369X10110034.  Google Scholar  A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-posed Problems, Winston & Sons, Washington, 1977. Google Scholar  G. Yagubov, F. Toyoglu and M. Subasi, An optimal control problem for two-dimensional Schrodinger Equation, Applied Mathematics and Computation, 218 (2012), 6177-6187.  doi: 10.1016/j.amc.2011.12.028.  Google Scholar  G. Y. Yagubov and M. A. Musayeva, On the identification problem for nonlinear Schrodinger equation, Differential Equation, 3 (1997), 1691-1698 (in Russian). Google Scholar
  Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437  Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016  Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control & Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161  Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431  Binhua Feng, Dun Zhao. On the Cauchy problem for the XFEL Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4171-4186. doi: 10.3934/dcdsb.2018131  Christian Léonard. A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1533-1574. doi: 10.3934/dcds.2014.34.1533  Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469  Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102  Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011  Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266  Max Gunzburger, Sung-Dae Yang, Wenxiang Zhu. Analysis and discretization of an optimal control problem for the forced Fisher equation. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 569-587. doi: 10.3934/dcdsb.2007.8.569  Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105  Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967  Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689  D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563  Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791  Shuai Zhang, Shaopeng Xu. The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3367-3385. doi: 10.3934/cpaa.2020149  Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027  Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843  Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

2019 Impact Factor: 1.233