-
Previous Article
Weak Galerkin mixed finite element methods for parabolic equations with memory
- DCDS-S Home
- This Issue
-
Next Article
The first integral method for two fractional non-linear biological models
On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation
1. | Iǧdır University, Faculty of Science and Art, Department of Mathematics, Iǧdır, Turkey |
2. | Kafkas University, Faculty of Science and Art, Department of Mathematics, Kars, Turkey |
3. | Atatürk University, Faculty of Science, Department of Mathematics, Erzurum, Turkey |
In this paper, an optimal control problem for Schrödinger equation with complex coefficient which contains gradient is examined. A theorem is given that states the existence and uniqueness of the solution of the initial-boundary value problem for Schrödinger equation. Then for the solution of the optimal control problem, two different cases are investigated. Firstly, it is shown that the optimal control problem has a unique solution for $α >0$ on a dense subset $G$ on the space $H$ which contains the measurable square integrable functions on $\left(0,l\right)$ and secondly the optimal control problem has at least one solution for any $α ≥ 0$ on the space $H$.
References:
[1] |
A. Abdon and D. Baleanu,
Application of Fixed Point Theorem for Stability Analysis of a Nonlinear Schrodinger with Caputo-Liouville Derivative, Filomat, 31 (2017), 2243-2248.
doi: 10.2298/FIL1708243A. |
[2] |
N. Y. Aksoy, G. Yagubov and B. Yildiz, The finite difference approximations of the optimal control problem for nonlinear Schrodinger equation, International Journal of Mathematical Modeling and Numerical Optimization, 3 (2012), 158-183. Google Scholar |
[3] |
A. G. Butkovsky and Yu. I. Samoylenko,
Control of Quantum-Mechanical Process and Systems, Kluwer Academic, Dordrecht, 1990.
doi: 10.1007/978-94-009-1994-5. |
[4] |
M. Goebel,
On Existence of optimal control, Math. Nachr., 53 (1979), 67-73.
doi: 10.1002/mana.19790930106. |
[5] |
D. N. Hao, Optimal control of quantum systems, Avtomatika i Telemechanika, 2 (1986), 14-21; (Russian)Automation and Remote Control, 47 (1986), 162-168. Google Scholar |
[6] |
K. Iosida,
Functional Analysis, Mir, 1967, (in Russian). |
[7] |
A. D. Iskenderov and G. Ya. Yagubov, A variational method for solving inverse problem of determining the quantum mechanical potential, (Russian)Sov. Math. Doklady, 303 (1988), 1044-1048; Am. Math. Soc. , 38 (1989), 637-641. |
[8] |
A. D. Iskenderov and G. Ya. Yagubov,
Optimal control of nonlinear quantum mechanical systems, Autom.Telemech., 12 (1989), 27-38.
|
[9] |
A. D. Iskenderov, Definition of potantial in nonstationary Schrodinger equation, Mathematical Simulation and Optimal Control Problems, (2001), 6-36. Google Scholar |
[10] |
A. D. Iskenderov,
On variational formulations of multidimensional inverse problems of mathematical physics, Dokl. Akad. Nauk SSSR, 274 (1984), 531-533.
|
[11] |
A. D. Iskenderov and N. M. Makhmudov,
Optimal control of a quantum mechanical system with the Lions quality criterion, Izv. Akad. Nauk Azerb. Ser. Fiz.-Tekh. Mat. Nauk, 16 (1995), 30-35.
|
[12] |
O. A. Ladyzhenskaya,
Boundary Value Problems of Mathematical Physics, Nauka, Moscow, 1973 (in Russian). |
[13] |
J. L. Lions,
Contrôle Des Systèmes Distribués Singuliers, Gauthier Villars, Paris, 1983. |
[14] |
J. L. Lions,
Optimal Control of Systems Governed by Partial Differential Equations, Springer, New York, 1971. |
[15] |
N. M. Makhmudov,
A difference method for solving an optimal control problem for the Schrödinger equation with the Lions quality criterion, Izv. Chelyabinsk. Nauchn. Tsentra, 3 (2009), 1-6 (in Russian).
|
[16] |
N. M. Makhmudov,
On an optimal control problem for the Schrödinger equation with a real-valued coefficient, Izv. Vyssh. Uchebn. Zaved. Mat., 11 (2010), 31-40 (in Russian).
doi: 10.3103/S1066369X10110034. |
[17] |
A. N. Tikhonov and V. Y. Arsenin,
Solution of Ill-posed Problems, Winston & Sons, Washington, 1977. |
[18] |
G. Yagubov, F. Toyoglu and M. Subasi,
An optimal control problem for two-dimensional Schrodinger Equation, Applied Mathematics and Computation, 218 (2012), 6177-6187.
doi: 10.1016/j.amc.2011.12.028. |
[19] |
G. Y. Yagubov and M. A. Musayeva,
On the identification problem for nonlinear Schrodinger equation, Differential Equation, 3 (1997), 1691-1698 (in Russian).
|
show all references
References:
[1] |
A. Abdon and D. Baleanu,
Application of Fixed Point Theorem for Stability Analysis of a Nonlinear Schrodinger with Caputo-Liouville Derivative, Filomat, 31 (2017), 2243-2248.
doi: 10.2298/FIL1708243A. |
[2] |
N. Y. Aksoy, G. Yagubov and B. Yildiz, The finite difference approximations of the optimal control problem for nonlinear Schrodinger equation, International Journal of Mathematical Modeling and Numerical Optimization, 3 (2012), 158-183. Google Scholar |
[3] |
A. G. Butkovsky and Yu. I. Samoylenko,
Control of Quantum-Mechanical Process and Systems, Kluwer Academic, Dordrecht, 1990.
doi: 10.1007/978-94-009-1994-5. |
[4] |
M. Goebel,
On Existence of optimal control, Math. Nachr., 53 (1979), 67-73.
doi: 10.1002/mana.19790930106. |
[5] |
D. N. Hao, Optimal control of quantum systems, Avtomatika i Telemechanika, 2 (1986), 14-21; (Russian)Automation and Remote Control, 47 (1986), 162-168. Google Scholar |
[6] |
K. Iosida,
Functional Analysis, Mir, 1967, (in Russian). |
[7] |
A. D. Iskenderov and G. Ya. Yagubov, A variational method for solving inverse problem of determining the quantum mechanical potential, (Russian)Sov. Math. Doklady, 303 (1988), 1044-1048; Am. Math. Soc. , 38 (1989), 637-641. |
[8] |
A. D. Iskenderov and G. Ya. Yagubov,
Optimal control of nonlinear quantum mechanical systems, Autom.Telemech., 12 (1989), 27-38.
|
[9] |
A. D. Iskenderov, Definition of potantial in nonstationary Schrodinger equation, Mathematical Simulation and Optimal Control Problems, (2001), 6-36. Google Scholar |
[10] |
A. D. Iskenderov,
On variational formulations of multidimensional inverse problems of mathematical physics, Dokl. Akad. Nauk SSSR, 274 (1984), 531-533.
|
[11] |
A. D. Iskenderov and N. M. Makhmudov,
Optimal control of a quantum mechanical system with the Lions quality criterion, Izv. Akad. Nauk Azerb. Ser. Fiz.-Tekh. Mat. Nauk, 16 (1995), 30-35.
|
[12] |
O. A. Ladyzhenskaya,
Boundary Value Problems of Mathematical Physics, Nauka, Moscow, 1973 (in Russian). |
[13] |
J. L. Lions,
Contrôle Des Systèmes Distribués Singuliers, Gauthier Villars, Paris, 1983. |
[14] |
J. L. Lions,
Optimal Control of Systems Governed by Partial Differential Equations, Springer, New York, 1971. |
[15] |
N. M. Makhmudov,
A difference method for solving an optimal control problem for the Schrödinger equation with the Lions quality criterion, Izv. Chelyabinsk. Nauchn. Tsentra, 3 (2009), 1-6 (in Russian).
|
[16] |
N. M. Makhmudov,
On an optimal control problem for the Schrödinger equation with a real-valued coefficient, Izv. Vyssh. Uchebn. Zaved. Mat., 11 (2010), 31-40 (in Russian).
doi: 10.3103/S1066369X10110034. |
[17] |
A. N. Tikhonov and V. Y. Arsenin,
Solution of Ill-posed Problems, Winston & Sons, Washington, 1977. |
[18] |
G. Yagubov, F. Toyoglu and M. Subasi,
An optimal control problem for two-dimensional Schrodinger Equation, Applied Mathematics and Computation, 218 (2012), 6177-6187.
doi: 10.1016/j.amc.2011.12.028. |
[19] |
G. Y. Yagubov and M. A. Musayeva,
On the identification problem for nonlinear Schrodinger equation, Differential Equation, 3 (1997), 1691-1698 (in Russian).
|
[1] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[2] |
Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303 |
[3] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020032 |
[4] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[5] |
Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125 |
[6] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[7] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[8] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[9] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[10] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[11] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[12] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[13] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[14] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[15] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[16] |
Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121 |
[17] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294 |
[18] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298 |
[19] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[20] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]