-
Previous Article
Weak Galerkin mixed finite element methods for parabolic equations with memory
- DCDS-S Home
- This Issue
-
Next Article
The first integral method for two fractional non-linear biological models
On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation
1. | Iǧdır University, Faculty of Science and Art, Department of Mathematics, Iǧdır, Turkey |
2. | Kafkas University, Faculty of Science and Art, Department of Mathematics, Kars, Turkey |
3. | Atatürk University, Faculty of Science, Department of Mathematics, Erzurum, Turkey |
In this paper, an optimal control problem for Schrödinger equation with complex coefficient which contains gradient is examined. A theorem is given that states the existence and uniqueness of the solution of the initial-boundary value problem for Schrödinger equation. Then for the solution of the optimal control problem, two different cases are investigated. Firstly, it is shown that the optimal control problem has a unique solution for $α >0$ on a dense subset $G$ on the space $H$ which contains the measurable square integrable functions on $\left(0,l\right)$ and secondly the optimal control problem has at least one solution for any $α ≥ 0$ on the space $H$.
References:
[1] |
A. Abdon and D. Baleanu,
Application of Fixed Point Theorem for Stability Analysis of a Nonlinear Schrodinger with Caputo-Liouville Derivative, Filomat, 31 (2017), 2243-2248.
doi: 10.2298/FIL1708243A. |
[2] |
N. Y. Aksoy, G. Yagubov and B. Yildiz,
The finite difference approximations of the optimal control problem for nonlinear Schrodinger equation, International Journal of Mathematical Modeling and Numerical Optimization, 3 (2012), 158-183.
|
[3] |
A. G. Butkovsky and Yu. I. Samoylenko,
Control of Quantum-Mechanical Process and Systems, Kluwer Academic, Dordrecht, 1990.
doi: 10.1007/978-94-009-1994-5. |
[4] |
M. Goebel,
On Existence of optimal control, Math. Nachr., 53 (1979), 67-73.
doi: 10.1002/mana.19790930106. |
[5] |
D. N. Hao, Optimal control of quantum systems, Avtomatika i Telemechanika, 2 (1986), 14-21; (Russian)Automation and Remote Control, 47 (1986), 162-168. |
[6] | |
[7] |
A. D. Iskenderov and G. Ya. Yagubov, A variational method for solving inverse problem of determining the quantum mechanical potential, (Russian)Sov. Math. Doklady, 303 (1988), 1044-1048; Am. Math. Soc. , 38 (1989), 637-641. |
[8] |
A. D. Iskenderov and G. Ya. Yagubov,
Optimal control of nonlinear quantum mechanical systems, Autom.Telemech., 12 (1989), 27-38.
|
[9] |
A. D. Iskenderov,
Definition of potantial in nonstationary Schrodinger equation, Mathematical Simulation and Optimal Control Problems, (2001), 6-36.
|
[10] |
A. D. Iskenderov,
On variational formulations of multidimensional inverse problems of mathematical physics, Dokl. Akad. Nauk SSSR, 274 (1984), 531-533.
|
[11] |
A. D. Iskenderov and N. M. Makhmudov,
Optimal control of a quantum mechanical system with the Lions quality criterion, Izv. Akad. Nauk Azerb. Ser. Fiz.-Tekh. Mat. Nauk, 16 (1995), 30-35.
|
[12] |
O. A. Ladyzhenskaya,
Boundary Value Problems of Mathematical Physics, Nauka, Moscow, 1973 (in Russian). |
[13] |
J. L. Lions,
Contrôle Des Systèmes Distribués Singuliers, Gauthier Villars, Paris, 1983. |
[14] |
J. L. Lions,
Optimal Control of Systems Governed by Partial Differential Equations, Springer, New York, 1971. |
[15] |
N. M. Makhmudov,
A difference method for solving an optimal control problem for the Schrödinger equation with the Lions quality criterion, Izv. Chelyabinsk. Nauchn. Tsentra, 3 (2009), 1-6 (in Russian).
|
[16] |
N. M. Makhmudov,
On an optimal control problem for the Schrödinger equation with a real-valued coefficient, Izv. Vyssh. Uchebn. Zaved. Mat., 11 (2010), 31-40 (in Russian).
doi: 10.3103/S1066369X10110034. |
[17] |
A. N. Tikhonov and V. Y. Arsenin,
Solution of Ill-posed Problems, Winston & Sons, Washington, 1977. |
[18] |
G. Yagubov, F. Toyoglu and M. Subasi,
An optimal control problem for two-dimensional Schrodinger Equation, Applied Mathematics and Computation, 218 (2012), 6177-6187.
doi: 10.1016/j.amc.2011.12.028. |
[19] |
G. Y. Yagubov and M. A. Musayeva,
On the identification problem for nonlinear Schrodinger equation, Differential Equation, 3 (1997), 1691-1698 (in Russian).
|
show all references
References:
[1] |
A. Abdon and D. Baleanu,
Application of Fixed Point Theorem for Stability Analysis of a Nonlinear Schrodinger with Caputo-Liouville Derivative, Filomat, 31 (2017), 2243-2248.
doi: 10.2298/FIL1708243A. |
[2] |
N. Y. Aksoy, G. Yagubov and B. Yildiz,
The finite difference approximations of the optimal control problem for nonlinear Schrodinger equation, International Journal of Mathematical Modeling and Numerical Optimization, 3 (2012), 158-183.
|
[3] |
A. G. Butkovsky and Yu. I. Samoylenko,
Control of Quantum-Mechanical Process and Systems, Kluwer Academic, Dordrecht, 1990.
doi: 10.1007/978-94-009-1994-5. |
[4] |
M. Goebel,
On Existence of optimal control, Math. Nachr., 53 (1979), 67-73.
doi: 10.1002/mana.19790930106. |
[5] |
D. N. Hao, Optimal control of quantum systems, Avtomatika i Telemechanika, 2 (1986), 14-21; (Russian)Automation and Remote Control, 47 (1986), 162-168. |
[6] | |
[7] |
A. D. Iskenderov and G. Ya. Yagubov, A variational method for solving inverse problem of determining the quantum mechanical potential, (Russian)Sov. Math. Doklady, 303 (1988), 1044-1048; Am. Math. Soc. , 38 (1989), 637-641. |
[8] |
A. D. Iskenderov and G. Ya. Yagubov,
Optimal control of nonlinear quantum mechanical systems, Autom.Telemech., 12 (1989), 27-38.
|
[9] |
A. D. Iskenderov,
Definition of potantial in nonstationary Schrodinger equation, Mathematical Simulation and Optimal Control Problems, (2001), 6-36.
|
[10] |
A. D. Iskenderov,
On variational formulations of multidimensional inverse problems of mathematical physics, Dokl. Akad. Nauk SSSR, 274 (1984), 531-533.
|
[11] |
A. D. Iskenderov and N. M. Makhmudov,
Optimal control of a quantum mechanical system with the Lions quality criterion, Izv. Akad. Nauk Azerb. Ser. Fiz.-Tekh. Mat. Nauk, 16 (1995), 30-35.
|
[12] |
O. A. Ladyzhenskaya,
Boundary Value Problems of Mathematical Physics, Nauka, Moscow, 1973 (in Russian). |
[13] |
J. L. Lions,
Contrôle Des Systèmes Distribués Singuliers, Gauthier Villars, Paris, 1983. |
[14] |
J. L. Lions,
Optimal Control of Systems Governed by Partial Differential Equations, Springer, New York, 1971. |
[15] |
N. M. Makhmudov,
A difference method for solving an optimal control problem for the Schrödinger equation with the Lions quality criterion, Izv. Chelyabinsk. Nauchn. Tsentra, 3 (2009), 1-6 (in Russian).
|
[16] |
N. M. Makhmudov,
On an optimal control problem for the Schrödinger equation with a real-valued coefficient, Izv. Vyssh. Uchebn. Zaved. Mat., 11 (2010), 31-40 (in Russian).
doi: 10.3103/S1066369X10110034. |
[17] |
A. N. Tikhonov and V. Y. Arsenin,
Solution of Ill-posed Problems, Winston & Sons, Washington, 1977. |
[18] |
G. Yagubov, F. Toyoglu and M. Subasi,
An optimal control problem for two-dimensional Schrodinger Equation, Applied Mathematics and Computation, 218 (2012), 6177-6187.
doi: 10.1016/j.amc.2011.12.028. |
[19] |
G. Y. Yagubov and M. A. Musayeva,
On the identification problem for nonlinear Schrodinger equation, Differential Equation, 3 (1997), 1691-1698 (in Russian).
|
[1] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[2] |
Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations and Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016 |
[3] |
Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control and Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161 |
[4] |
Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431 |
[5] |
Binhua Feng, Dun Zhao. On the Cauchy problem for the XFEL Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4171-4186. doi: 10.3934/dcdsb.2018131 |
[6] |
Hongwei Wang, Amin Esfahani. On the Cauchy problem for a nonlocal nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022039 |
[7] |
Christian Léonard. A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1533-1574. doi: 10.3934/dcds.2014.34.1533 |
[8] |
Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems and Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469 |
[9] |
Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102 |
[10] |
Phan Van Tin. On the Cauchy problem for a derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Evolution Equations and Control Theory, 2022, 11 (3) : 837-867. doi: 10.3934/eect.2021028 |
[11] |
Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011 |
[12] |
Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266 |
[13] |
Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105 |
[14] |
Max Gunzburger, Sung-Dae Yang, Wenxiang Zhu. Analysis and discretization of an optimal control problem for the forced Fisher equation. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 569-587. doi: 10.3934/dcdsb.2007.8.569 |
[15] |
Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial and Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967 |
[16] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6359-6376. doi: 10.3934/dcdsb.2021022 |
[17] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations and Control Theory, 2022, 11 (1) : 301-324. doi: 10.3934/eect.2021014 |
[18] |
Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689 |
[19] |
D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563 |
[20] |
Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]