• Previous Article
    A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation
  • DCDS-S Home
  • This Issue
  • Next Article
    On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation
June  2019, 12(3): 513-531. doi: 10.3934/dcdss.2019034

Weak Galerkin mixed finite element methods for parabolic equations with memory

School of Mathematical and Statistics, Shandong Normal University, Jinan 250014, China

* Corresponding author: Qiang Xu, Ailing Zhu.

Received  June 2017 Revised  September 2017 Published  September 2018

Fund Project: Project supported by the Natural Science Foundation of Shandong Province (No. ZR2014AM033).

We develop a semidiscrete and a backward Euler fully discrete weak Galerkin mixed finite element method for a parabolic differential equation with memory. The optimal order error estimates in both $ |\|·|\| $ and $ L^2 $ norms are established based on a generalized elliptic projection. In the numerical experiments, the equation is solved by the weak Galerkin schemes with spaces $ \{[P_{k}(T)]^2, P_{k}(e), P_{k+1}(T)\} $ for $ k = 0 $ and the numerical convergence rates confirm the theoretical results.

Citation: Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034
References:
[1]

H. CheZ. ZhouZ. Jiang and Y. Wang, $ H^1 $-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integro-differential equations, Numer. Methods Partial Differential Equations, 29 (2013), 799-817.  doi: 10.1002/num.21731.  Google Scholar

[2]

Z. Jiang, $ L^∞(L^2) $ and $ L^∞(L^∞) $ error estimates for mixed methods for integro-differential equations of parabolic type, ESAIM Math. Model. Numer. Anal., 33 (1999), 531-546.  doi: 10.1051/m2an:1999151.  Google Scholar

[3]

L. Mu, J. Wang, Y. Wang and X. Ye, A weak Galerkin mixed finite element method for biharmonic equations, in Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, Springer Press, 45 (2013), 247-277. doi: 10.1007/978-1-4614-7172-1_13.  Google Scholar

[4]

L. MuJ. Wang and X. Ye, A hybridized formulation for the weak Galerkin mixed finite element method, J. Comput. Appl. Math., 307 (2016), 335-345.  doi: 10.1016/j.cam.2016.01.004.  Google Scholar

[5]

A. K. Pani and G. Fairweather, $ H^1 $-Galerkin mixed finite element methods for parabolic partial integro-differential equations, IMA J. Numer. Anal., 22 (2002), 231-252.  doi: 10.1093/imanum/22.2.231.  Google Scholar

[6]

R. K. SinhaR. E. Ewing and R. D. Lazarov, Mixed finite element approximations of parabolic integro-differential equations with nonsmooth initial data, SIAM J. Numer. Anal., 47 (2009), 3269-3292.  doi: 10.1137/080740490.  Google Scholar

[7]

J. Wang and X. Ye, A weak Galerkin finite element methods for elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[8]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[9]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[10]

E. G. Yanik and G. Fairweather, Finite element methods for parabolic and hyperbolic partial integro-differential equations, Nonlinear Anal., 12 (1988), 785-809.  doi: 10.1016/0362-546X(88)90039-9.  Google Scholar

[11]

Q. Zhang and R. Zhang, A weak Galerkin mixed finite element method for second-order elliptic equations with Robin boundary conditions, J. Comput. Math., 34 (2016), 532-548.  doi: 10.4208/jcm.1604-m2015-0413.  Google Scholar

[12]

C. ZhouY. ZouS. ChaiQ. Zhang and H. Zhu, Weak Galerkin mixed finite element method for heat equation, Appl. Numer. Math., 123 (2018), 180-199.  doi: 10.1016/j.apnum.2017.08.009.  Google Scholar

[13]

Z. Zhou, An H1-Galerkin mixed finite element method for a class of heat transport equations, Appl. Math. Model., 34 (2010), 2414-2425.  doi: 10.1016/j.apm.2009.11.007.  Google Scholar

[14]

A. Zhu, Discontinuous mixed covolume methods for linear parabolic integrodifferential problems, J. Appl. Math. , 2014 (2014), Art. ID 649468, 8 pp. doi: 10.1155/2014/649468.  Google Scholar

[15]

A. ZhuT. Xu and Q. Xu, Weak Galerkin finite element methods for linear parabolic integro-differential equations, Numer. Methods Partial Differential Equations, 32 (2016), 1357-1377.  doi: 10.1002/num.22053.  Google Scholar

show all references

References:
[1]

H. CheZ. ZhouZ. Jiang and Y. Wang, $ H^1 $-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integro-differential equations, Numer. Methods Partial Differential Equations, 29 (2013), 799-817.  doi: 10.1002/num.21731.  Google Scholar

[2]

Z. Jiang, $ L^∞(L^2) $ and $ L^∞(L^∞) $ error estimates for mixed methods for integro-differential equations of parabolic type, ESAIM Math. Model. Numer. Anal., 33 (1999), 531-546.  doi: 10.1051/m2an:1999151.  Google Scholar

[3]

L. Mu, J. Wang, Y. Wang and X. Ye, A weak Galerkin mixed finite element method for biharmonic equations, in Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, Springer Press, 45 (2013), 247-277. doi: 10.1007/978-1-4614-7172-1_13.  Google Scholar

[4]

L. MuJ. Wang and X. Ye, A hybridized formulation for the weak Galerkin mixed finite element method, J. Comput. Appl. Math., 307 (2016), 335-345.  doi: 10.1016/j.cam.2016.01.004.  Google Scholar

[5]

A. K. Pani and G. Fairweather, $ H^1 $-Galerkin mixed finite element methods for parabolic partial integro-differential equations, IMA J. Numer. Anal., 22 (2002), 231-252.  doi: 10.1093/imanum/22.2.231.  Google Scholar

[6]

R. K. SinhaR. E. Ewing and R. D. Lazarov, Mixed finite element approximations of parabolic integro-differential equations with nonsmooth initial data, SIAM J. Numer. Anal., 47 (2009), 3269-3292.  doi: 10.1137/080740490.  Google Scholar

[7]

J. Wang and X. Ye, A weak Galerkin finite element methods for elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[8]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[9]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[10]

E. G. Yanik and G. Fairweather, Finite element methods for parabolic and hyperbolic partial integro-differential equations, Nonlinear Anal., 12 (1988), 785-809.  doi: 10.1016/0362-546X(88)90039-9.  Google Scholar

[11]

Q. Zhang and R. Zhang, A weak Galerkin mixed finite element method for second-order elliptic equations with Robin boundary conditions, J. Comput. Math., 34 (2016), 532-548.  doi: 10.4208/jcm.1604-m2015-0413.  Google Scholar

[12]

C. ZhouY. ZouS. ChaiQ. Zhang and H. Zhu, Weak Galerkin mixed finite element method for heat equation, Appl. Numer. Math., 123 (2018), 180-199.  doi: 10.1016/j.apnum.2017.08.009.  Google Scholar

[13]

Z. Zhou, An H1-Galerkin mixed finite element method for a class of heat transport equations, Appl. Math. Model., 34 (2010), 2414-2425.  doi: 10.1016/j.apm.2009.11.007.  Google Scholar

[14]

A. Zhu, Discontinuous mixed covolume methods for linear parabolic integrodifferential problems, J. Appl. Math. , 2014 (2014), Art. ID 649468, 8 pp. doi: 10.1155/2014/649468.  Google Scholar

[15]

A. ZhuT. Xu and Q. Xu, Weak Galerkin finite element methods for linear parabolic integro-differential equations, Numer. Methods Partial Differential Equations, 32 (2016), 1357-1377.  doi: 10.1002/num.22053.  Google Scholar

Figure 1.  A typical uniform mesh on $(0, 1)\times(0, 1)$ with $h = 1/8$
Table 1.  Error behaviors of FWG-MFEM for the first example with $\Delta t = 4h^2$
$h$ $|||e_{h}|||$ $\mbox{order}\approx$$\|\varepsilon_{h}\|$ $\mbox{order}\approx$
$2^{-3}$4.8132e-002-1.7834e-003-
$2^{-4}$2.3657e-0021.02474.3564e-0042.0334
$2^{-5}$1.1823e-0021.00071.0872e-0042.0026
$2^{-6}$5.9209e-0030.99772.7312e-0051.9929
$2^{-7}$2.9583e-0031.00106.8160e-0062.0026
$h$ $|||e_{h}|||$ $\mbox{order}\approx$$\|\varepsilon_{h}\|$ $\mbox{order}\approx$
$2^{-3}$4.8132e-002-1.7834e-003-
$2^{-4}$2.3657e-0021.02474.3564e-0042.0334
$2^{-5}$1.1823e-0021.00071.0872e-0042.0026
$2^{-6}$5.9209e-0030.99772.7312e-0051.9929
$2^{-7}$2.9583e-0031.00106.8160e-0062.0026
Table 2.  Error behaviors of FWG-MFEM for the second example with $\Delta t = 4h^2$
$h$ $|||e_{h}|||$ $\mbox{order}\approx$$\|\varepsilon_{h}\|$ $\mbox{order}\approx$
$2^{-3}$1.0576e-000-2.1024e-002-
$2^{-4}$5.1613e-0011.03504.8443e-0032.1177
$2^{-5}$2.5868e-0010.99661.2043e-0032.0081
$2^{-6}$1.2929e-0011.00063.0093e-0042.0007
$2^{-7}$6.4627e-0021.00047.5140e-0052.0018
$h$ $|||e_{h}|||$ $\mbox{order}\approx$$\|\varepsilon_{h}\|$ $\mbox{order}\approx$
$2^{-3}$1.0576e-000-2.1024e-002-
$2^{-4}$5.1613e-0011.03504.8443e-0032.1177
$2^{-5}$2.5868e-0010.99661.2043e-0032.0081
$2^{-6}$1.2929e-0011.00063.0093e-0042.0007
$2^{-7}$6.4627e-0021.00047.5140e-0052.0018
[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[3]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[4]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[5]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[6]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[7]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[8]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[9]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[10]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[11]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[14]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[15]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[16]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[17]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[18]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[19]

Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020356

[20]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (151)
  • HTML views (183)
  • Cited by (3)

Other articles
by authors

[Back to Top]