Article Contents
Article Contents

# A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation

• * Corresponding author: Tel.:+904223773745
• In this paper, we developed a unified method to solve time fractional Burgers' equation using the Chebyshev wavelet and L1 discretization formula. First we give the preliminary information about Chebyshev wavelet method, then we describe time discretization of the problems under consideration and then we apply Chebyshev wavelets for space discretization. The performance of the method is shown by three test problems and obtained results compared with other results available in literature.

Mathematics Subject Classification: Primary: 65T60, 65N35; Secondary: 35R11.

 Citation:

• Figure 1.  Numerical solution and exact solution for $\alpha = 0.5$, $\Delta t = 0.0025$, $m' = 10$ and $\nu = 1$ at $t = 1$

Figure 2.  Numerical solution and exact solution for $\alpha = 0.5$, $\Delta t = 0.0005$ and $\nu = 1$ at $t = 0.1$

Figure 3.  Numerical solution and exact solution for $\alpha = 0.5$, $\Delta t = 0.005$ and $\nu = 1$ at $t = 0.5$

Table 1.  Error norms for various values of $\alpha$ and for $\Delta t = 0.00025$ at $t = 1$

 $\alpha=0.1$ $\alpha=0.25$ [6] Present [6] Present $N=40$ $m'=10$ $N=40$ $m'=10$ $L_{2}\times10^{3}$ 0.096733 0.075146 0.090053 0.073586 $L_{\infty}\times10^{3}$ 0.272943 0.106340 0.258623 0.104141 $\alpha=0.75$ [6] Present $N=40$ $m'=10$ $L_{2}\times10^{3}$ 0.035448 0.069536 $L_{\infty}\times10^{3}$ 0.124569 0.098312

Table 2.  Error norms for various values of $\Delta t$ and for $\nu = 1$, $\alpha = 0.5$ at $t = 1$

 $\Delta t=0.002$ $\Delta t=0.001$ [6] Present [6] Present $N=40$ $m'=10$ $N=40$ $m'=10$ $L_{2}\times10^{3}$ 0.434586 0.570509 0.176195 0.284035 $L_{\infty}\times10^{3}$ 0.642003 0.807275 0.265419 0.401953 $\Delta t=0.0005$ [6] Present $N=40$ $m'=10$ $L_{2}\times10^{3}$ 0.068869 0.141630 $L_{\infty}\times10^{3}$ 0.211883 0.200442

Table 3.  Error norms for various values of $\nu$ and for $\Delta t = 0.0005$, $\alpha = 0.5$ at $t = 0.1$

 $\nu=1$ $\nu=0.5$ [6] Present [6] Present $N=80$ $m'=10$ $N=80$ $m'=10$ $L_{2}\times10^{3}$ 0.006528 0.006980 0.005835 0.006492 $L_{\infty}\times10^{3}$ 0.009164 0.009547 0.008250 0.008854 $\nu=0.1$ [6] Present $N=80$ $m'=10$ $L_{2}\times10^{3}$ 0.003105 0.004288 $L_{\infty}\times10^{3}$ 0.004847 0.005714

Table 4.  Error norms for various collocation points and for $\Delta t = 0.00025$, $\alpha = 0.5$ at $t = 1$

 [6] Present [6] Present $N=10$ $m'=10$ $N=20$ $m'=20$ $L_{2}\times10^{3}$ 1.787278 0.024252 0.440305 0.024212 $L_{\infty}\times10^{3}$ 2.415589 0.032824 0.583583 0.033666 [6] Present $N=40$ $m'=40$ $L_{2}\times10^{3}$ 0.092735 0.024210 $L_{\infty}\times10^{3}$ 0.120495 0.033727

Table 5.  Error norms for various values of $\Delta t$ and for $\nu = 1$, $\alpha = 0.5$ at $t = 1$

 $\Delta t=0.002$ $\Delta t=0.001$ [6] Present [6] Present $N=120$ $m'=16$ $N=120$ $m'=16$ $L_{2}\times10^{3}$ 1.220123 1.153760 0.532436 0.466776 $L_{\infty}\times10^{3}$ 1.725765 1.563758 0.753171 0.609456 $\Delta t=0.0005$ [6] Present $N=120$ $m'=16$ $L_{2}\times10^{3}$ 0.188710 0.126335 $L_{\infty}\times10^{3}$ 0.267546 0.180767
•  A. Atangana  and  J. F. Gez-Aguilar , A new derivative with normal distribution kernel: Theory, methods and applications, Physica A: Statistical Mechanics and its Applications, 476 (2017) , 1-14.  doi: 10.1016/j.physa.2017.02.016. A. Atangana , Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos, Solitons & Fractals, 102 (2017) , 396-406.  doi: 10.1016/j.chaos.2017.04.027. E. Babolian  and  F. Fattahzadeh , Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration, Applied Mathematics and Computation, 188 (2007) , 417-426.  doi: 10.1016/j.amc.2006.10.008. I. Celik , Chebyshev Wavelet collocation method for solving generalized Burgers- Huxley equation, Mathematical Methods in the Applied Sciences, 39 (2016) , 366-377.  doi: 10.1002/mma.3487. I. Daubechies, Ten Lectures on Wavelet, SIAM, Philadelphia, 1992. doi: 10.1137/1.9781611970104. A. Esen  and  O. Tasbozan , Numerical solution of time fractional burgers equation by cubic b-spline finite elements, Mediterranean Journal of Mathematics, 13 (2016) , 1325-1337.  doi: 10.1007/s00009-015-0555-x. A. K. Gupta and S. Saha Ray, Travelling wave solution of fractional KdV-Burger-Kuramoto equation describing nonlinear physical phenomena, AIP Adv., 4 (2014), http://dx.doi.org/10.1063/1.4895910. 097120-1-11. M. H. Heydari , M. R. Hooshmandasl  and  F. M. Maalek Ghaini , A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type, Applied Mathematical Modelling, 38 (2014) , 1597-1606.  doi: 10.1016/j.apm.2013.09.013. K. B. Oldham and J. Spanier, The Fractional Calculus, Academic, New York, 1974. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. M. Razzaghi  and  S. Yousefi , Legendre wavelets direct method for variational problems, Mathematics and Computers in Simulation, 53 (2000) , 185-192.  doi: 10.1016/S0378-4754(00)00170-1. M. Razzaghi  and  S. Yousefi , Legendre wavelets operational matrix of integration, International Journal of Systems Science, 32 (2001) , 495-502.  doi: 10.1080/00207720120227. S. G. Rubin and R. A. Graves, Cubic spline approximation for problems in fluid mechanics, NASA TR R-436, Washington, DC, 1975. B. S. T. Alkahtani , A. Atangana  and  I. Koca , Novel analysis of the fractional Zika model using the Adams type predictor-corrector rule for non-singular and non-local fractional operators, Journal of Nonlinear Sciences and Applications, 10 (2017) , 3191-3200.  doi: 10.22436/jnsa.010.06.32. J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, 2007. P. K. Sahu  and  S. Saha Ray , Legendre wavelets operational method for the numerical solutions of nonlinear Volterra integro-differential equations system, Appl. Math. Comput., 256 (2015) , 715-723.  doi: 10.1016/j.amc.2015.01.063. P. K. Sahu  and  S. Saha Ray , Two dimensional Legendre wavelet method for the numerical solutions of fuzzy integro-differential equations, J. Intell. Fuzzy Syst., 28 (2015) , 1271-1279. Y. Wang  and  Q. Fan , The second kind Chebyshev wavelet method for solving fractional differential equations, Appl. Math. Comput., 218 (2012) , 8592-8601.  doi: 10.1016/j.amc.2012.02.022. C. Yang  and  J. Hou , Chebyshev wavelets method for solving Bratu's problem, Boundary Value Problems, 142 (2013) , 1-9.  doi: 10.1186/1687-2770-2013-142. F. Zhou  and  X. Xu , Numerical solution of the convection diffusion equations by the second kind Chebyshev wavelets, Applied Mathematics and Computation, 247 (2014) , 353-367.  doi: 10.1016/j.amc.2014.08.091. L. Zhu  and  Q. Fan , Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet, Commun. Nonlinear Sci Numer. Simul., 17 (2012) , 2333-2341.  doi: 10.1016/j.cnsns.2011.10.014.

Figures(3)

Tables(5)