    June  2019, 12(3): 533-542. doi: 10.3934/dcdss.2019035

## A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation

 1 Eǧil Vocational and Technical Anatolian High School, Diyarbakır, Turkey 2 İnonu University, Department of Mathematics, Malatya, Turkey 3 İnonu University, Department of Physics, Malatya, Turkey

* Corresponding author: Tel.:+904223773745

Received  February 2017 Revised  September 2017 Published  September 2018

In this paper, we developed a unified method to solve time fractional Burgers' equation using the Chebyshev wavelet and L1 discretization formula. First we give the preliminary information about Chebyshev wavelet method, then we describe time discretization of the problems under consideration and then we apply Chebyshev wavelets for space discretization. The performance of the method is shown by three test problems and obtained results compared with other results available in literature.

Citation: Ömer Oruç, Alaattin Esen, Fatih Bulut. A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 533-542. doi: 10.3934/dcdss.2019035
##### References:
  A. Atangana and J. F. Gez-Aguilar, A new derivative with normal distribution kernel: Theory, methods and applications, Physica A: Statistical Mechanics and its Applications, 476 (2017), 1-14.  doi: 10.1016/j.physa.2017.02.016.  Google Scholar  A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos, Solitons & Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.  Google Scholar  E. Babolian and F. Fattahzadeh, Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration, Applied Mathematics and Computation, 188 (2007), 417-426.  doi: 10.1016/j.amc.2006.10.008.  Google Scholar  I. Celik, Chebyshev Wavelet collocation method for solving generalized Burgers- Huxley equation, Mathematical Methods in the Applied Sciences, 39 (2016), 366-377.  doi: 10.1002/mma.3487.  Google Scholar  I. Daubechies, Ten Lectures on Wavelet, SIAM, Philadelphia, 1992. doi: 10.1137/1.9781611970104.  Google Scholar  A. Esen and O. Tasbozan, Numerical solution of time fractional burgers equation by cubic b-spline finite elements, Mediterranean Journal of Mathematics, 13 (2016), 1325-1337.  doi: 10.1007/s00009-015-0555-x.  Google Scholar  A. K. Gupta and S. Saha Ray, Travelling wave solution of fractional KdV-Burger-Kuramoto equation describing nonlinear physical phenomena, AIP Adv., 4 (2014), http://dx.doi.org/10.1063/1.4895910. 097120-1-11. Google Scholar  M. H. Heydari, M. R. Hooshmandasl and F. M. Maalek Ghaini, A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type, Applied Mathematical Modelling, 38 (2014), 1597-1606.  doi: 10.1016/j.apm.2013.09.013.  Google Scholar  K. B. Oldham and J. Spanier, The Fractional Calculus, Academic, New York, 1974. Google Scholar  I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. Google Scholar  M. Razzaghi and S. Yousefi, Legendre wavelets direct method for variational problems, Mathematics and Computers in Simulation, 53 (2000), 185-192.  doi: 10.1016/S0378-4754(00)00170-1.  Google Scholar  M. Razzaghi and S. Yousefi, Legendre wavelets operational matrix of integration, International Journal of Systems Science, 32 (2001), 495-502.  doi: 10.1080/00207720120227.  Google Scholar  S. G. Rubin and R. A. Graves, Cubic spline approximation for problems in fluid mechanics, NASA TR R-436, Washington, DC, 1975. Google Scholar  B. S. T. Alkahtani, A. Atangana and I. Koca, Novel analysis of the fractional Zika model using the Adams type predictor-corrector rule for non-singular and non-local fractional operators, Journal of Nonlinear Sciences and Applications, 10 (2017), 3191-3200.  doi: 10.22436/jnsa.010.06.32.  Google Scholar  J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, 2007. Google Scholar  P. K. Sahu and S. Saha Ray, Legendre wavelets operational method for the numerical solutions of nonlinear Volterra integro-differential equations system, Appl. Math. Comput., 256 (2015), 715-723.  doi: 10.1016/j.amc.2015.01.063.  Google Scholar  P. K. Sahu and S. Saha Ray, Two dimensional Legendre wavelet method for the numerical solutions of fuzzy integro-differential equations, J. Intell. Fuzzy Syst., 28 (2015), 1271-1279. Google Scholar  Y. Wang and Q. Fan, The second kind Chebyshev wavelet method for solving fractional differential equations, Appl. Math. Comput., 218 (2012), 8592-8601.  doi: 10.1016/j.amc.2012.02.022.  Google Scholar  C. Yang and J. Hou, Chebyshev wavelets method for solving Bratu's problem, Boundary Value Problems, 142 (2013), 1-9.  doi: 10.1186/1687-2770-2013-142.  Google Scholar  F. Zhou and X. Xu, Numerical solution of the convection diffusion equations by the second kind Chebyshev wavelets, Applied Mathematics and Computation, 247 (2014), 353-367.  doi: 10.1016/j.amc.2014.08.091.  Google Scholar  L. Zhu and Q. Fan, Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet, Commun. Nonlinear Sci Numer. Simul., 17 (2012), 2333-2341.  doi: 10.1016/j.cnsns.2011.10.014.  Google Scholar

show all references

##### References:
  A. Atangana and J. F. Gez-Aguilar, A new derivative with normal distribution kernel: Theory, methods and applications, Physica A: Statistical Mechanics and its Applications, 476 (2017), 1-14.  doi: 10.1016/j.physa.2017.02.016.  Google Scholar  A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos, Solitons & Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.  Google Scholar  E. Babolian and F. Fattahzadeh, Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration, Applied Mathematics and Computation, 188 (2007), 417-426.  doi: 10.1016/j.amc.2006.10.008.  Google Scholar  I. Celik, Chebyshev Wavelet collocation method for solving generalized Burgers- Huxley equation, Mathematical Methods in the Applied Sciences, 39 (2016), 366-377.  doi: 10.1002/mma.3487.  Google Scholar  I. Daubechies, Ten Lectures on Wavelet, SIAM, Philadelphia, 1992. doi: 10.1137/1.9781611970104.  Google Scholar  A. Esen and O. Tasbozan, Numerical solution of time fractional burgers equation by cubic b-spline finite elements, Mediterranean Journal of Mathematics, 13 (2016), 1325-1337.  doi: 10.1007/s00009-015-0555-x.  Google Scholar  A. K. Gupta and S. Saha Ray, Travelling wave solution of fractional KdV-Burger-Kuramoto equation describing nonlinear physical phenomena, AIP Adv., 4 (2014), http://dx.doi.org/10.1063/1.4895910. 097120-1-11. Google Scholar  M. H. Heydari, M. R. Hooshmandasl and F. M. Maalek Ghaini, A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type, Applied Mathematical Modelling, 38 (2014), 1597-1606.  doi: 10.1016/j.apm.2013.09.013.  Google Scholar  K. B. Oldham and J. Spanier, The Fractional Calculus, Academic, New York, 1974. Google Scholar  I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. Google Scholar  M. Razzaghi and S. Yousefi, Legendre wavelets direct method for variational problems, Mathematics and Computers in Simulation, 53 (2000), 185-192.  doi: 10.1016/S0378-4754(00)00170-1.  Google Scholar  M. Razzaghi and S. Yousefi, Legendre wavelets operational matrix of integration, International Journal of Systems Science, 32 (2001), 495-502.  doi: 10.1080/00207720120227.  Google Scholar  S. G. Rubin and R. A. Graves, Cubic spline approximation for problems in fluid mechanics, NASA TR R-436, Washington, DC, 1975. Google Scholar  B. S. T. Alkahtani, A. Atangana and I. Koca, Novel analysis of the fractional Zika model using the Adams type predictor-corrector rule for non-singular and non-local fractional operators, Journal of Nonlinear Sciences and Applications, 10 (2017), 3191-3200.  doi: 10.22436/jnsa.010.06.32.  Google Scholar  J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, 2007. Google Scholar  P. K. Sahu and S. Saha Ray, Legendre wavelets operational method for the numerical solutions of nonlinear Volterra integro-differential equations system, Appl. Math. Comput., 256 (2015), 715-723.  doi: 10.1016/j.amc.2015.01.063.  Google Scholar  P. K. Sahu and S. Saha Ray, Two dimensional Legendre wavelet method for the numerical solutions of fuzzy integro-differential equations, J. Intell. Fuzzy Syst., 28 (2015), 1271-1279. Google Scholar  Y. Wang and Q. Fan, The second kind Chebyshev wavelet method for solving fractional differential equations, Appl. Math. Comput., 218 (2012), 8592-8601.  doi: 10.1016/j.amc.2012.02.022.  Google Scholar  C. Yang and J. Hou, Chebyshev wavelets method for solving Bratu's problem, Boundary Value Problems, 142 (2013), 1-9.  doi: 10.1186/1687-2770-2013-142.  Google Scholar  F. Zhou and X. Xu, Numerical solution of the convection diffusion equations by the second kind Chebyshev wavelets, Applied Mathematics and Computation, 247 (2014), 353-367.  doi: 10.1016/j.amc.2014.08.091.  Google Scholar  L. Zhu and Q. Fan, Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet, Commun. Nonlinear Sci Numer. Simul., 17 (2012), 2333-2341.  doi: 10.1016/j.cnsns.2011.10.014.  Google Scholar Numerical solution and exact solution for $\alpha = 0.5$, $\Delta t = 0.0025$, $m' = 10$ and $\nu = 1$ at $t = 1$ Numerical solution and exact solution for $\alpha = 0.5$, $\Delta t = 0.0005$ and $\nu = 1$ at $t = 0.1$ Numerical solution and exact solution for $\alpha = 0.5$, $\Delta t = 0.005$ and $\nu = 1$ at $t = 0.5$
Error norms for various values of $\alpha$ and for $\Delta t = 0.00025$ at $t = 1$
 $\alpha=0.1$ $\alpha=0.25$  Present  Present $N=40$ $m'=10$ $N=40$ $m'=10$ $L_{2}\times10^{3}$ 0.096733 0.075146 0.090053 0.073586 $L_{\infty}\times10^{3}$ 0.272943 0.106340 0.258623 0.104141 $\alpha=0.75$  Present $N=40$ $m'=10$ $L_{2}\times10^{3}$ 0.035448 0.069536 $L_{\infty}\times10^{3}$ 0.124569 0.098312
 $\alpha=0.1$ $\alpha=0.25$  Present  Present $N=40$ $m'=10$ $N=40$ $m'=10$ $L_{2}\times10^{3}$ 0.096733 0.075146 0.090053 0.073586 $L_{\infty}\times10^{3}$ 0.272943 0.106340 0.258623 0.104141 $\alpha=0.75$  Present $N=40$ $m'=10$ $L_{2}\times10^{3}$ 0.035448 0.069536 $L_{\infty}\times10^{3}$ 0.124569 0.098312
Error norms for various values of $\Delta t$ and for $\nu = 1$, $\alpha = 0.5$ at $t = 1$
 $\Delta t=0.002$ $\Delta t=0.001$  Present  Present $N=40$ $m'=10$ $N=40$ $m'=10$ $L_{2}\times10^{3}$ 0.434586 0.570509 0.176195 0.284035 $L_{\infty}\times10^{3}$ 0.642003 0.807275 0.265419 0.401953 $\Delta t=0.0005$  Present $N=40$ $m'=10$ $L_{2}\times10^{3}$ 0.068869 0.141630 $L_{\infty}\times10^{3}$ 0.211883 0.200442
 $\Delta t=0.002$ $\Delta t=0.001$  Present  Present $N=40$ $m'=10$ $N=40$ $m'=10$ $L_{2}\times10^{3}$ 0.434586 0.570509 0.176195 0.284035 $L_{\infty}\times10^{3}$ 0.642003 0.807275 0.265419 0.401953 $\Delta t=0.0005$  Present $N=40$ $m'=10$ $L_{2}\times10^{3}$ 0.068869 0.141630 $L_{\infty}\times10^{3}$ 0.211883 0.200442
Error norms for various values of $\nu$ and for $\Delta t = 0.0005$, $\alpha = 0.5$ at $t = 0.1$
 $\nu=1$ $\nu=0.5$  Present  Present $N=80$ $m'=10$ $N=80$ $m'=10$ $L_{2}\times10^{3}$ 0.006528 0.006980 0.005835 0.006492 $L_{\infty}\times10^{3}$ 0.009164 0.009547 0.008250 0.008854 $\nu=0.1$  Present $N=80$ $m'=10$ $L_{2}\times10^{3}$ 0.003105 0.004288 $L_{\infty}\times10^{3}$ 0.004847 0.005714
 $\nu=1$ $\nu=0.5$  Present  Present $N=80$ $m'=10$ $N=80$ $m'=10$ $L_{2}\times10^{3}$ 0.006528 0.006980 0.005835 0.006492 $L_{\infty}\times10^{3}$ 0.009164 0.009547 0.008250 0.008854 $\nu=0.1$  Present $N=80$ $m'=10$ $L_{2}\times10^{3}$ 0.003105 0.004288 $L_{\infty}\times10^{3}$ 0.004847 0.005714
Error norms for various collocation points and for $\Delta t = 0.00025$, $\alpha = 0.5$ at $t = 1$
  Present  Present $N=10$ $m'=10$ $N=20$ $m'=20$ $L_{2}\times10^{3}$ 1.787278 0.024252 0.440305 0.024212 $L_{\infty}\times10^{3}$ 2.415589 0.032824 0.583583 0.033666  Present $N=40$ $m'=40$ $L_{2}\times10^{3}$ 0.092735 0.024210 $L_{\infty}\times10^{3}$ 0.120495 0.033727
  Present  Present $N=10$ $m'=10$ $N=20$ $m'=20$ $L_{2}\times10^{3}$ 1.787278 0.024252 0.440305 0.024212 $L_{\infty}\times10^{3}$ 2.415589 0.032824 0.583583 0.033666  Present $N=40$ $m'=40$ $L_{2}\times10^{3}$ 0.092735 0.024210 $L_{\infty}\times10^{3}$ 0.120495 0.033727
Error norms for various values of $\Delta t$ and for $\nu = 1$, $\alpha = 0.5$ at $t = 1$
 $\Delta t=0.002$ $\Delta t=0.001$  Present  Present $N=120$ $m'=16$ $N=120$ $m'=16$ $L_{2}\times10^{3}$ 1.220123 1.153760 0.532436 0.466776 $L_{\infty}\times10^{3}$ 1.725765 1.563758 0.753171 0.609456 $\Delta t=0.0005$  Present $N=120$ $m'=16$ $L_{2}\times10^{3}$ 0.188710 0.126335 $L_{\infty}\times10^{3}$ 0.267546 0.180767
 $\Delta t=0.002$ $\Delta t=0.001$  Present  Present $N=120$ $m'=16$ $N=120$ $m'=16$ $L_{2}\times10^{3}$ 1.220123 1.153760 0.532436 0.466776 $L_{\infty}\times10^{3}$ 1.725765 1.563758 0.753171 0.609456 $\Delta t=0.0005$  Present $N=120$ $m'=16$ $L_{2}\times10^{3}$ 0.188710 0.126335 $L_{\infty}\times10^{3}$ 0.267546 0.180767
  Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2025-2039. doi: 10.3934/dcdss.2020402  Panagiotis Stinis. A hybrid method for the inviscid Burgers equation. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 793-799. doi: 10.3934/dcds.2003.9.793  Tianliang Yang, J. M. McDonough. Solution filtering technique for solving Burgers' equation. Conference Publications, 2003, 2003 (Special) : 951-959. doi: 10.3934/proc.2003.2003.951  Stephanie Flores, Elijah Hight, Everardo Olivares-Vargas, Tamer Oraby, Jose Palacio, Erwin Suazo, Jasang Yoon. Exact and numerical solution of stochastic Burgers equations with variable coefficients. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2735-2750. doi: 10.3934/dcdss.2020224  Zhonghui Li, Xiangyong Chen, Jianlong Qiu, Tongshui Xia. A novel Chebyshev-collocation spectral method for solving the transport equation. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2519-2526. doi: 10.3934/jimo.2020080  Zhaosheng Feng, Yu Huang. Approximate solution of the Burgers-Korteweg-de Vries equation. Communications on Pure & Applied Analysis, 2007, 6 (2) : 429-440. doi: 10.3934/cpaa.2007.6.429  Jingwei Hu, Jie Shen, Yingwei Wang. A Petrov-Galerkin spectral method for the inelastic Boltzmann equation using mapped Chebyshev functions. Kinetic & Related Models, 2020, 13 (4) : 677-702. doi: 10.3934/krm.2020023  Masoumeh Hosseininia, Mohammad Hossein Heydari, Carlo Cattani. A wavelet method for nonlinear variable-order time fractional 2D Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2273-2295. doi: 10.3934/dcdss.2020295  Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270  Zhaosheng Feng, Qingguo Meng. Exact solution for a two-dimensional KDV-Burgers-type equation with nonlinear terms of any order. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 285-291. doi: 10.3934/dcdsb.2007.7.285  Jianzhong Wang. Wavelet approach to numerical differentiation of noisy functions. Communications on Pure & Applied Analysis, 2007, 6 (3) : 873-897. doi: 10.3934/cpaa.2007.6.873  Guo Ben-Yu, Wang Zhong-Qing. Modified Chebyshev rational spectral method for the whole line. Conference Publications, 2003, 2003 (Special) : 365-374. doi: 10.3934/proc.2003.2003.365  Chun-Hsiung Hsia, Xiaoming Wang. On a Burgers' type equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1121-1139. doi: 10.3934/dcdsb.2006.6.1121  Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327  Taposh Kumar Das, Óscar López Pouso. New insights into the numerical solution of the Boltzmann transport equation for photons. Kinetic & Related Models, 2014, 7 (3) : 433-461. doi: 10.3934/krm.2014.7.433  T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277  Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768  Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139  Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503  Jaemin Shin, Yongho Choi, Junseok Kim. An unconditionally stable numerical method for the viscous Cahn--Hilliard equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1737-1747. doi: 10.3934/dcdsb.2014.19.1737

2020 Impact Factor: 2.425