|
A. Atangana
and J. F. Gez-Aguilar
, A new derivative with normal distribution kernel: Theory, methods and applications, Physica A: Statistical Mechanics and its Applications, 476 (2017)
, 1-14.
doi: 10.1016/j.physa.2017.02.016.
|
|
A. Atangana
, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos, Solitons & Fractals, 102 (2017)
, 396-406.
doi: 10.1016/j.chaos.2017.04.027.
|
|
E. Babolian
and F. Fattahzadeh
, Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration, Applied Mathematics and Computation, 188 (2007)
, 417-426.
doi: 10.1016/j.amc.2006.10.008.
|
|
I. Celik
, Chebyshev Wavelet collocation method for solving generalized Burgers- Huxley equation, Mathematical Methods in the Applied Sciences, 39 (2016)
, 366-377.
doi: 10.1002/mma.3487.
|
|
I. Daubechies, Ten Lectures on Wavelet, SIAM, Philadelphia, 1992.
doi: 10.1137/1.9781611970104.
|
|
A. Esen
and O. Tasbozan
, Numerical solution of time fractional burgers equation by cubic b-spline finite elements, Mediterranean Journal of Mathematics, 13 (2016)
, 1325-1337.
doi: 10.1007/s00009-015-0555-x.
|
|
A. K. Gupta and S. Saha Ray, Travelling wave solution of fractional KdV-Burger-Kuramoto equation describing nonlinear physical phenomena, AIP Adv., 4 (2014), http://dx.doi.org/10.1063/1.4895910. 097120-1-11.
|
|
M. H. Heydari
, M. R. Hooshmandasl
and F. M. Maalek Ghaini
, A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type, Applied Mathematical Modelling, 38 (2014)
, 1597-1606.
doi: 10.1016/j.apm.2013.09.013.
|
|
K. B. Oldham and J. Spanier,
The Fractional Calculus, Academic, New York, 1974.
|
|
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
|
|
M. Razzaghi
and S. Yousefi
, Legendre wavelets direct method for variational problems, Mathematics and Computers in Simulation, 53 (2000)
, 185-192.
doi: 10.1016/S0378-4754(00)00170-1.
|
|
M. Razzaghi
and S. Yousefi
, Legendre wavelets operational matrix of integration, International Journal of Systems Science, 32 (2001)
, 495-502.
doi: 10.1080/00207720120227.
|
|
S. G. Rubin and R. A. Graves, Cubic spline approximation for problems in fluid mechanics, NASA TR R-436, Washington, DC, 1975.
|
|
B. S. T. Alkahtani
, A. Atangana
and I. Koca
, Novel analysis of the fractional Zika model using the Adams type predictor-corrector rule for non-singular and non-local fractional operators, Journal of Nonlinear Sciences and Applications, 10 (2017)
, 3191-3200.
doi: 10.22436/jnsa.010.06.32.
|
|
J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, 2007.
|
|
P. K. Sahu
and S. Saha Ray
, Legendre wavelets operational method for the numerical solutions of nonlinear Volterra integro-differential equations system, Appl. Math. Comput., 256 (2015)
, 715-723.
doi: 10.1016/j.amc.2015.01.063.
|
|
P. K. Sahu
and S. Saha Ray
, Two dimensional Legendre wavelet method for the numerical solutions of fuzzy integro-differential equations, J. Intell. Fuzzy Syst., 28 (2015)
, 1271-1279.
|
|
Y. Wang
and Q. Fan
, The second kind Chebyshev wavelet method for solving fractional differential equations, Appl. Math. Comput., 218 (2012)
, 8592-8601.
doi: 10.1016/j.amc.2012.02.022.
|
|
C. Yang
and J. Hou
, Chebyshev wavelets method for solving Bratu's problem, Boundary Value Problems, 142 (2013)
, 1-9.
doi: 10.1186/1687-2770-2013-142.
|
|
F. Zhou
and X. Xu
, Numerical solution of the convection diffusion equations by the second kind Chebyshev wavelets, Applied Mathematics and Computation, 247 (2014)
, 353-367.
doi: 10.1016/j.amc.2014.08.091.
|
|
L. Zhu
and Q. Fan
, Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet, Commun. Nonlinear Sci Numer. Simul., 17 (2012)
, 2333-2341.
doi: 10.1016/j.cnsns.2011.10.014.
|