|
A. Almendral
and C. W. Oosterlee
, Accurate evaluation of European and American options under the CGMY process, SIAM Journal on Scientific Computing, 29 (2007)
, 93-117.
doi: 10.1137/050637613.
|
|
R. Baltensperger
, J. P. Berrut
and B. Noël
, Exponential convergence of a linear rational interpolant between transformed Chebyshev points, Mathematics of Computation, 68 (1999)
, 1109-1120.
doi: 10.1090/S0025-5718-99-01070-4.
|
|
J. P. Berrut
and H. D. Milltelmann
, Rational interpolation trough the optimal attachment of poles to the interpolating polynomial, Numerical Algorithms, 23 (2000)
, 315-328.
doi: 10.1023/A:1019168504808.
|
|
J. P. Berrut
and L. N. Trefethen
, Barycentric Lagrange interpolation, SIAM Review, 46 (2004)
, 501-517.
doi: 10.1137/S0036144502417715.
|
|
F. Black
and M. Scholes
, Pricing of options and corporate liabilities, Journal of Political Economy, 81 (1973)
, 637-654.
doi: 10.1086/260062.
|
|
M. Briani
, C. La Chioma
and R. Natalini
, Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory, Journal of Numerical Mathematics, 98 (2004)
, 607-646.
doi: 10.1007/s00211-004-0530-0.
|
|
P. Carr
, H. German
, D. B. Madan
and M. Yor
, The fine structure of asset returns: An empirical investigation, Journal of Business, 75 (2002)
, 305-332.
doi: 10.1086/338705.
|
|
T. F. Coleman
, Y. Li
and A. Verma
, Reconstructing the unknown local volatility function, Journal of Computational Finance, 2 (1999)
, 77-100.
doi: 10.1142/9789812810663_0007.
|
|
R. Company, L. J$\acute{o}$dar and M. Fakharany, Positive solutions of European option pricing with CGMY process models using double discretization difference schemes, Abstr. Appl. Anal., 2013 (2013), Art. ID 517480, 11 pp.
|
|
R. Cont
and E. Voltchkova
, A finite difference scheme for option pricing in jumps diffusion and exponential L$\acute{e}$vy models, SIAM Journal on Numerical Analysis, 43 (2005)
, 1596-1626.
doi: 10.1137/S0036142903436186.
|
|
R. Cont
and E. Voltchkova
, A finite difference scheme for option pricing in jump diffusion and exponential Lvy models, SIAM J. Numer. Anal., 43 (2005)
, 1596-1626.
doi: 10.1137/S0036142903436186.
|
|
J. M. Corcuera et al, Completion of Lévy market by power jump assets, Finance Stochastic, 9 (2005), 109–127.
doi: 10.1007/s00780-004-0139-2.
|
|
P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press Inc., Orlando, FL, 2nd edition, 1984.
|
|
Y. d'Halluin
, P. A. Forsyth
and K. R. Vetzal
, Robust numerical methods for contigent claims under jump-diffusion processs, IMA Journal of Numerical Analysis, 25 (2005)
, 87-112.
doi: 10.1093/imanum/drh011.
|
|
B. Dupire
, Pricing with a smile, RISK Magazine, 1 (1994)
, 18-20.
|
|
M. Fakharany
, R. Company
and L. Jódar
, Solving partial integro-option pricing problems for a wide class of infinite activity Lévy processes, Journal of Computational and applied Mathematics, 296 (2016)
, 739-752.
doi: 10.1016/j.cam.2015.10.027.
|
|
R. Frontczak
and R. Söchbel
, On modified Mellin transforms, Gauss aguerre quadrature, and the valuation of American call options, Journal of Computational and Applied Mathematics, 234 (2010)
, 1559-1571.
doi: 10.1016/j.cam.2010.02.037.
|
|
D. Funaro, Polynomial Approximation of Differential Equations, Springer, Berlin, 1992.
|
|
T. Goll
and J. Kallen
, Optimal portfolios for logarithmic utility, Stochastic Process. Appl., 89 (2000)
, 31-48.
doi: 10.1016/S0304-4149(00)00011-9.
|
|
T. Goll
and L. Rüschendorf
, Minimax and minimal distance martingale measures and their relationship to portfolio optimization, Finance Stochastic, 5 (2001)
, 557-581.
doi: 10.1007/s007800100052.
|
|
D. Gottlieb
and C. -W. Shu
, On the Gibbs phenomenon Ⅳ: Recovering exponential accuracy in a subinterval from a Gegenbauer partial sum of a piecewise analytic function, Journal of Computational and Applied Mathematics, 64 (1995)
, 1081-1095.
doi: 10.2307/2153484.
|
|
S. Heston
, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies, 6 (1993)
, 327-343.
doi: 10.1093/rfs/6.2.327.
|
|
M. Hochbruck
and C. Lubich
, On Krylov subspace approximations to the matrix exponential operator, SIAM Journal of Numerical Analysis, 34 (1997)
, 1911-1925.
doi: 10.1137/S0036142995280572.
|
|
J. Hull
and A. White
, The pricing of options with stochastic volatilities, Journal of Finance, 42 (1987)
, 281-300.
doi: 10.1111/j.1540-6261.1987.tb02568.x.
|
|
A. K. Kassam
and L. N. Trefethen
, Fourth-order time stepping for stiff PDEs, SIAM Journal of Scientific Computing, 26 (2005)
, 1214-1233.
doi: 10.1137/S1064827502410633.
|
|
G. Klein
and J. P. Berrut
, Linear barycentric rational quadrature, BIT Numerical Mathematics, 52 (2012)
, 407-424.
doi: 10.1007/s10543-011-0357-x.
|
|
P. E. Kloeden
, G. J. Neuenkirch
and T. Shardlow
, The exponential integrator scheme for stochastic partial differential equations: Pathwise error bounds, Journal of Computational and Applied Mathematics, 235 (2011)
, 1245-1260.
doi: 10.1016/j.cam.2010.08.011.
|
|
S. G. Kou
, A jump-diffusion model for option pricing, Management Science, 8 (2002)
, 1086-1101.
|
|
J. L. Lagrange, Leçons élémentaires sur les mathématiques, données à l'Ecole Normal en 1795, in Oeuvres VII, Gauthier-Villars, Paris, 7 (1877), 183–287.
|
|
D. B. Madan
and E. Seneta
, The variance gamma model for share market returns, Journal of Business, 63 (1990)
, 511-524.
doi: 10.1086/296519.
|
|
D. Madan
and M. Yor
, Representing the CGMY and Meixner Lvy processes as time changed Brownian motions, Journal of Computational Finance, 12 (2008)
, 27-47.
doi: 10.21314/JCF.2008.181.
|
|
C. Markakis, and L. Barack, High-order difference and pseudospectral methods for discontinuous problems, arXiv: 1406.4865v1, [maths. NA], (2014) 1-9.
|
|
R. C. Merton
, Option pricing when the underlying stocks are discontinuous, Journal of Financial Economics, 5 (1976)
, 125-144.
doi: 10.1016/0304-405X(76)90022-2.
|
|
J. Niesen and W. M. Wright, A Krylov subspace method for option pricing, Technical report SSRN 1799124, 2011.
doi: 10.2139/ssrn.1799124.
|
|
E. Ngounda
, K. C. Patidar
and E. Pindza
, Contour Integral Method for European Options with Jumps, Communications in Nonlinear Science and Numerical Simulation, 18 (2013)
, 478-492.
doi: 10.1016/j.cnsns.2012.08.003.
|
|
S. A. Orszag
, Spectral methods for problems in complex geometries, Journal of Computational Physics, 37 (1980)
, 70-92.
doi: 10.1016/0021-9991(80)90005-4.
|
|
H. K. Pang
and H. W. Sun
, Fast exponential time integration for pricing options in stochastic volatility jump diffusion models, East Asian Journal on Applied Mathematics, 4 (2014)
, 52-68.
doi: 10.4208/eajam.280313.061013a.
|
|
A. Papapantoleon, An Introduction to Lévy Processes with Applications in Finance, Lecture Notes, University of Freiburg, 2008.
|
|
H. P. Pfeiffer
, L. E. Kidder
, M. A. Scheel
and S. A. Teukolsky
, A multi-domain spectral method for solving elliptic equations, Computer Physics Communications, 152 (2003)
, 253-273.
doi: 10.1016/S0010-4655(02)00847-0.
|
|
E. Pindza
, K. C. Patidar
and E. Ngounda
, Robust Spectral Method for Numerical Valuation of European Options under Merton's Jump-Diffusion Model, Numerical Methods for Partial Differential Equations, 30 (2014)
, 1169-1188.
doi: 10.1002/num.21864.
|
|
N. Rambeerich
, D. Y. Tangaman
and M. Bhuruth
, Numerical Pricing Of American Option Under Infinite Activity Lévy Processes, Journal of Futures Markets, 31 (2011)
, 809-829.
doi: 10.1002/fut.20497.
|
|
Y. Saad
, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM Journal of Numerical Analysis, 29 (1992)
, 209-228.
doi: 10.1137/0729014.
|
|
T. Schmelzer
and L. N. Trefethen
, Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals, Electronic Transactions on Numerical Analysis, 29 (2007)
, 1-18.
|
|
W. Schoutens
, J. L. Teugels
and L. processes
, Polynomials and martingales, Communications in Statistics. Stochastic Models, 14 (1998)
, 335-349.
doi: 10.1080/15326349808807475.
|
|
W. Schoutens, Lévy Processes in Finance: Pricing Financial Derivatives, Wiley, New York, 2003.
doi: 10.1002/0470870230.
|
|
D. Y. Tangman
, A. Gopaul
and M. Bhuruth
, Exponential time integration and Chebyshev discretisation schemes for fast pricing options, Applied Numerical Mathematics, 58 (2008)
, 1309-1319.
doi: 10.1016/j.apnum.2007.07.005.
|
|
D. Tavella and C. Randall, Pricing Financial Instruments: The Finite Difference Method, Wiley, New York, 2000.
|
|
L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia, PA, 2013.
|
|
L. N. Trefethen
, Is Gauss quadrature better than Clenshaw urtis?, SIAM Review, 50 (2008)
, 67-87.
doi: 10.1137/060659831.
|
|
L. N. Trefethen, Spectral Methods in Matlab, SIAM, Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719598.
|
|
L. N. Trefethen
and H. M. Gutknecht
, The Carathéodory-Fejér method for real rational approximation, SIAM Journal on Numerical Analysis, 20 (1983)
, 420-436.
doi: 10.1137/0720030.
|
|
I. R. Wang
, J. W. Wan
and P. A. Forsyth
, Robust numerical valuation of European and American options under the CGMY process, Journal of Computational Finance, 10 (2007)
, 31-69.
doi: 10.21314/JCF.2007.169.
|
|
B. D. Welfert
, Generation of pseudospectral differentiation matrices Ⅰ, SIAM Journal on Numerical Analysis, 34 (1997)
, 1640-1657.
doi: 10.1137/S0036142993295545.
|