June  2019, 12(3): 645-664. doi: 10.3934/dcdss.2019041

Couette flows of a viscous fluid with slip effects and non-integer order derivative without singular kernel

1. 

Department of Mathematics, School of Science, University of Management and Technology, C-Ⅱ Johar Town, Lahore 54770, Pakistan

2. 

Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, 9301, Bloemfontein, South Africa

* Corresponding author: abdonatangana@yahoo.fr, atanganaA@ufs.ac.za

Received  March 2017 Revised  July 2017 Published  September 2018

Couette flows of an incompressible viscous fluid with non-integer order derivative without singular kernel produced by the motion of a flat plate are analyzed under the slip condition at boundaries. An analytical transform approach is used to obtain the exact expressions for velocity and shear stress. Three particular cases from the general results with and without slip at the wall are obtained. These solutions, which are organized in simple forms in terms of exponential and trigonometric functions, can be conveniently engaged to obtain known solutions from the literature. The control of the new non-integer order derivative on the velocity of the fluid moreover a comparative study with an older model, is analyzed for some flows with practical applications. The non-integer order derivative with non-singular kernel is more appropriate for handling mathematical calculations of obtained solutions.

Citation: Muhammad Bilal Riaz, Naseer Ahmad Asif, Abdon Atangana, Muhammad Imran Asjad. Couette flows of a viscous fluid with slip effects and non-integer order derivative without singular kernel. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 645-664. doi: 10.3934/dcdss.2019041
References:
[1]

S. AbelmanE. Momoniat and T. Hayat, Couette flow of a third grade fluid with rotating frame and slip condition, Non-Linear Analysis: Real World Appl., 10 (2009), 3329-3334. doi: 10.1016/j.nonrwa.2008.10.068.

[2]

A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reactiondiffusion equation, Appl. Math. Comput., 1 (2016), 948-956. doi: 10.1016/j.amc.2015.10.021.

[3]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A.

[4]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85.

[5]

M. Caputo and M. Fabrizio, Damage and fatigue described by a fractional derivative model, J. Comput. Phys., 293 (2015), 400-408. doi: 10.1016/j.jcp.2014.11.012.

[6]

M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1-11. doi: 10.18576/pfda/020101.

[7]

M. A. Day, The non-slip boundary condition in fluid mechanics, Erkenntnis, 33 (1990), 285-296. doi: 10.1007/BF00717588.

[8]

L. Debnath and D. Bhatta, Integral Transforms and Their Applications, second ed., Chapman and Hall/CRC Press, Boca-Raton, 2007.

[9]

A. Heibig and L. I. Palade, On the rest state stability of an objective fractional derivative, Journal of Mathematical Physics, 49 (2008), 043101, 22pp. doi: 10.1063/1.2907578.

[10]

A. R. A. Khaled and K. Vafai, The effect of the slip condition on Stokes and Couette flows due to an oscillating wall: exact solutions, Int. J. Non-Lin. Mech., 39 (2004), 795-809. doi: 10.1016/S0020-7462(03)00043-X.

[11]

S. Kumar, A new fractional modeling arising in engineering sciences and its analytical approximate solution, Alexandria Eng. J., 52 (2013), 813-819. doi: 10.1016/j.aej.2013.09.005.

[12]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific Publishing, 2010. doi: 10.1142/9781848163300.

[13]

N. MakrisG. F. Dargush and M. C. Constantinou, Dynamic analysis of generalized viscoelastic fluids, J. Eng. Mech., 119 (1993), 1663-1679. doi: 10.1061/(ASCE)0733-9399(1993)119:8(1663).

[14]

M. Mooney, Explicit formula for slip and fluidity, J. Rheol., 2 (1931), 210-222. doi: 10.1122/1.2116364.

[15]

C. L. M. H. Navier, Sur les lois du movement des fluids, Mem. Acad. R. Sa: Inst. Fr., 6 (1827), 389-440.

[16]

I. Podlubny, Fractional Differential Equations, Academic Press, New York, 2009.

[17]

I. J. Rao and K. Rajagopal, The effect of the slip boundary condition on the flow of fluids in a channel, Acta Mech, 135 (1999), 113-126. doi: 10.1007/BF01305747.

[18]

I. Siddique and D. Vieru, Stokes flows of a Newtonian fluid with fractional derivatives and slip at the wall, Int. Rev. Chem. Eng. (IRECHE), 3 (2011), 822-826.

[19]

D. Vieru and A. A. Zafar, Some Couette flows of a Maxwell fluid with wall slip condition, Appl. Math. Inf. Sci., 7 (2013), 209-219. doi: 10.12785/amis/070126.

[20]

D. Vieru and A. Rauf, Stokes Flows of a Maxwell fluid with wall slip condition, Can. J. Phys, 89 (2011), 1061-1071. doi: 10.1139/p11-099.

show all references

References:
[1]

S. AbelmanE. Momoniat and T. Hayat, Couette flow of a third grade fluid with rotating frame and slip condition, Non-Linear Analysis: Real World Appl., 10 (2009), 3329-3334. doi: 10.1016/j.nonrwa.2008.10.068.

[2]

A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reactiondiffusion equation, Appl. Math. Comput., 1 (2016), 948-956. doi: 10.1016/j.amc.2015.10.021.

[3]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A.

[4]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85.

[5]

M. Caputo and M. Fabrizio, Damage and fatigue described by a fractional derivative model, J. Comput. Phys., 293 (2015), 400-408. doi: 10.1016/j.jcp.2014.11.012.

[6]

M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1-11. doi: 10.18576/pfda/020101.

[7]

M. A. Day, The non-slip boundary condition in fluid mechanics, Erkenntnis, 33 (1990), 285-296. doi: 10.1007/BF00717588.

[8]

L. Debnath and D. Bhatta, Integral Transforms and Their Applications, second ed., Chapman and Hall/CRC Press, Boca-Raton, 2007.

[9]

A. Heibig and L. I. Palade, On the rest state stability of an objective fractional derivative, Journal of Mathematical Physics, 49 (2008), 043101, 22pp. doi: 10.1063/1.2907578.

[10]

A. R. A. Khaled and K. Vafai, The effect of the slip condition on Stokes and Couette flows due to an oscillating wall: exact solutions, Int. J. Non-Lin. Mech., 39 (2004), 795-809. doi: 10.1016/S0020-7462(03)00043-X.

[11]

S. Kumar, A new fractional modeling arising in engineering sciences and its analytical approximate solution, Alexandria Eng. J., 52 (2013), 813-819. doi: 10.1016/j.aej.2013.09.005.

[12]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific Publishing, 2010. doi: 10.1142/9781848163300.

[13]

N. MakrisG. F. Dargush and M. C. Constantinou, Dynamic analysis of generalized viscoelastic fluids, J. Eng. Mech., 119 (1993), 1663-1679. doi: 10.1061/(ASCE)0733-9399(1993)119:8(1663).

[14]

M. Mooney, Explicit formula for slip and fluidity, J. Rheol., 2 (1931), 210-222. doi: 10.1122/1.2116364.

[15]

C. L. M. H. Navier, Sur les lois du movement des fluids, Mem. Acad. R. Sa: Inst. Fr., 6 (1827), 389-440.

[16]

I. Podlubny, Fractional Differential Equations, Academic Press, New York, 2009.

[17]

I. J. Rao and K. Rajagopal, The effect of the slip boundary condition on the flow of fluids in a channel, Acta Mech, 135 (1999), 113-126. doi: 10.1007/BF01305747.

[18]

I. Siddique and D. Vieru, Stokes flows of a Newtonian fluid with fractional derivatives and slip at the wall, Int. Rev. Chem. Eng. (IRECHE), 3 (2011), 822-826.

[19]

D. Vieru and A. A. Zafar, Some Couette flows of a Maxwell fluid with wall slip condition, Appl. Math. Inf. Sci., 7 (2013), 209-219. doi: 10.12785/amis/070126.

[20]

D. Vieru and A. Rauf, Stokes Flows of a Maxwell fluid with wall slip condition, Can. J. Phys, 89 (2011), 1061-1071. doi: 10.1139/p11-099.

Figure 1.  Geometry of flow
Figure 2.  Velocity profiles (VP) varus $y$, with $\beta = 0.4$, $t = 0.2$ for different values of $\alpha$ and when translation of the plate with a constant velocity $(g(t) = H(t))$
Figure 3.  VP varus $y$, with $\beta = 0.4$, $t = 0.4$ for different values of $\alpha$ and $g(t) = H(t)$
Figure 4.  VP varus $y$, with $\beta=0.4$, $t=0.8$ for different values of $\alpha$ and $g(t)=H(t)$
Figure 5.  VP varus $y$, with $\beta = 0.7$, $t = 0.2$ for different values of $\alpha$ and $g(t) = H(t)$
Figure 6.  VP varus $y$, with $\alpha = 0.3$, $t = 0.2$ for different values of $\beta$ and $g(t) = H(t)$
Figure 7.  VP varus $y$, with $\alpha = 0.6$, $t = 0.2$ for different values of $\beta$ and $g(t) = H(t)$
Figure 8.  VP varus $y$, with $\alpha = 0.9$, $t = 0.2$ for different values of $\beta$ and $g(t) = H(t)$
Figure 9.  VP varus $t$, with $\beta = 0.0$(no-slip), $y = 0.2$ for different values of $\alpha$ and $g(t) = H(t)$
Figure 10.  VP varus $t$, with $\beta = 0.4$, $y = 0.2$ for different values of $\alpha$ and $g(t) = H(t)$
Figure 11.  VP varus $t$, with $\beta = 0.7$, $y = 0.2$ for different values of $\alpha$ and $g(t) = H(t)$
Figure 12.  VP varus $y$, with $\beta = 0.4$, $t = 0.2$ for different values of $\alpha$ and when translation of the plate with a constant acceleration $(g(t) = t)$
Figure 13.  VP varus $y$, with $\beta = 0.4$, $t = 0.4$ for different values of $\alpha$ and $g(t) = t$
Figure 14.  VP varus $y$, with $\beta = 0.4$, $t = 0.8$ for different values of $\alpha$ and $g(t) = t$
Figure 15.  VP varus $y$, with $\beta = 0.7$, $t = 0.2$ for different values of $\alpha$ and $g(t) = t$
Figure 16.  VP varus $y$, with $\alpha = 0.3$, $t = 0.2$ for different values of $\beta$ and $g(t) = t$
Figure 17.  VP varus $y$, with $\alpha = 0.6$, $t = 0.2$ for different values of $\beta$ and $g(t) = t$
Figure 18.  VP varus $y$, with $\alpha = 0.9$, $t = 0.2$ for different values of $\beta$ and $g(t) = t$.
Figure 19.  VP varus $t$, with $\beta = 0.0$(no-slip), $y = 0.2$ for different values of $\alpha$ and $g(t) = t$
Figure 20.  VP varus $t$, with $\beta = 0.4$, $y = 0.2$ for different values of $\alpha$ and $g(t) = t$
Figure 21.  VP varus $t$, with $\beta = 0.0$, $y = 0.2$ for different values of $\alpha$ and $g(t) = t$
Figure 22.  VP varus $y$, with $\beta = 0.4$, $t = 0.2$ for different values of $\alpha$ and with the sinusoidal oscillations of the bottom plate $(g(t) = \sin t)$
Figure 23.  VP varus $y$, with $\beta = 0.4$, $t = 0.4$ for different values of $\alpha$ and $g(t) = \sin t$
Figure 24.  VP varus $y$, with $\beta = 0.4$, $t = 0.8$ for different values of $\alpha$ and $g(t) = \sin t$
Figure 25.  VP varus $y$, with $\beta = 0.7$, $t = 0.2$ for different values of $\alpha$ and $g(t) = \sin t$
Figure 26.  VP varus $y$, with $\alpha = 0.3$, $t = 0.2$ for different values of $\beta$ and $g(t) = \sin t$
Figure 27.  VP varus $y$, with $\alpha = 0.6$, $t = 0.2$ for different values of $\beta$ and $g(t) = \sin t$
Figure 28.  VP varus $y$, with $\alpha = 0.9$, $t = 0.2$ for different values of $\beta$ and $g(t) = \sin t$
Figure 29.  VP varus $t$, with $\beta = 0.0$(no-slip), $y = 0.2$ for different values of $\alpha$ and $g(t) = \sin t$
Figure 30.  VP varus $t$, with $\beta = 0.4$, $y = 0.2$ for different values of $\alpha$ and $g(t) = \sin t$
Figure 31.  VP varus $t$, with $\beta = 0.7$, $y = 0.2$ for different values of $\alpha$ and $g(t) = \sin t$
[1]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 975-993. doi: 10.3934/dcdss.2020057

[2]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[3]

Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 683-693. doi: 10.3934/dcdss.2020037

[4]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1017-1029. doi: 10.3934/dcdss.2020060

[5]

V. Torri. Numerical and dynamical analysis of undulation instability under shear stress. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 423-460. doi: 10.3934/dcdsb.2005.5.423

[6]

Wojciech M. Zajączkowski. Stability of axially-symmetric solutions to incompressible magnetohydrodynamics with no azimuthal velocity and with only azimuthal magnetic field. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1447-1482. doi: 10.3934/cpaa.2019070

[7]

Venkatesan Govindaraj, Raju K. George. Controllability of fractional dynamical systems: A functional analytic approach. Mathematical Control & Related Fields, 2017, 7 (4) : 537-562. doi: 10.3934/mcrf.2017020

[8]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019033

[9]

Okihiro Sawada. Analytic rates of solutions to the Euler equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1409-1415. doi: 10.3934/dcdss.2013.6.1409

[10]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. A functional-analytic technique for the study of analytic solutions of PDEs. Conference Publications, 2015, 2015 (special) : 923-935. doi: 10.3934/proc.2015.0923

[11]

Wei Long, Shuangjie Peng, Jing Yang. Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 917-939. doi: 10.3934/dcds.2016.36.917

[12]

Claudianor O. Alves, Giovany M. Figueiredo, Gaetano Siciliano. Ground state solutions for fractional scalar field equations under a general critical nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2199-2215. doi: 10.3934/cpaa.2019099

[13]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[14]

Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 539-560. doi: 10.3934/dcdss.2020030

[15]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[16]

V. Mastropietro, Michela Procesi. Lindstedt series for periodic solutions of beam equations with quadratic and velocity dependent nonlinearities. Communications on Pure & Applied Analysis, 2006, 5 (1) : 1-28. doi: 10.3934/cpaa.2006.5.1

[17]

Peter Takáč. Stabilization of positive solutions for analytic gradient-like systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 947-973. doi: 10.3934/dcds.2000.6.947

[18]

Olga Bernardi, Matteo Dalla Riva. Analytic dependence on parameters for Evans' approximated Weak KAM solutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4625-4636. doi: 10.3934/dcds.2017199

[19]

Irena Lasiecka, Roberto Triggiani. Heat--structure interaction with viscoelastic damping: Analyticity with sharp analytic sector, exponential decay, fractional powers. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1515-1543. doi: 10.3934/cpaa.2016001

[20]

Rebecca Vandiver. Effect of residual stress on peak cap stress in arteries. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1199-1214. doi: 10.3934/mbe.2014.11.1199

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (39)
  • HTML views (124)
  • Cited by (0)

[Back to Top]