June  2019, 12(3): 645-664. doi: 10.3934/dcdss.2019041

Couette flows of a viscous fluid with slip effects and non-integer order derivative without singular kernel

1. 

Department of Mathematics, School of Science, University of Management and Technology, C-Ⅱ Johar Town, Lahore 54770, Pakistan

2. 

Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, 9301, Bloemfontein, South Africa

* Corresponding author: abdonatangana@yahoo.fr, atanganaA@ufs.ac.za

Received  March 2017 Revised  July 2017 Published  September 2018

Couette flows of an incompressible viscous fluid with non-integer order derivative without singular kernel produced by the motion of a flat plate are analyzed under the slip condition at boundaries. An analytical transform approach is used to obtain the exact expressions for velocity and shear stress. Three particular cases from the general results with and without slip at the wall are obtained. These solutions, which are organized in simple forms in terms of exponential and trigonometric functions, can be conveniently engaged to obtain known solutions from the literature. The control of the new non-integer order derivative on the velocity of the fluid moreover a comparative study with an older model, is analyzed for some flows with practical applications. The non-integer order derivative with non-singular kernel is more appropriate for handling mathematical calculations of obtained solutions.

Citation: Muhammad Bilal Riaz, Naseer Ahmad Asif, Abdon Atangana, Muhammad Imran Asjad. Couette flows of a viscous fluid with slip effects and non-integer order derivative without singular kernel. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 645-664. doi: 10.3934/dcdss.2019041
References:
[1]

S. AbelmanE. Momoniat and T. Hayat, Couette flow of a third grade fluid with rotating frame and slip condition, Non-Linear Analysis: Real World Appl., 10 (2009), 3329-3334.  doi: 10.1016/j.nonrwa.2008.10.068.  Google Scholar

[2]

A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reactiondiffusion equation, Appl. Math. Comput., 1 (2016), 948-956.  doi: 10.1016/j.amc.2015.10.021.  Google Scholar

[3]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[4]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85.   Google Scholar

[5]

M. Caputo and M. Fabrizio, Damage and fatigue described by a fractional derivative model, J. Comput. Phys., 293 (2015), 400-408.  doi: 10.1016/j.jcp.2014.11.012.  Google Scholar

[6]

M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1-11.  doi: 10.18576/pfda/020101.  Google Scholar

[7]

M. A. Day, The non-slip boundary condition in fluid mechanics, Erkenntnis, 33 (1990), 285-296.  doi: 10.1007/BF00717588.  Google Scholar

[8]

L. Debnath and D. Bhatta, Integral Transforms and Their Applications, second ed., Chapman and Hall/CRC Press, Boca-Raton, 2007.  Google Scholar

[9]

A. Heibig and L. I. Palade, On the rest state stability of an objective fractional derivative, Journal of Mathematical Physics, 49 (2008), 043101, 22pp. doi: 10.1063/1.2907578.  Google Scholar

[10]

A. R. A. Khaled and K. Vafai, The effect of the slip condition on Stokes and Couette flows due to an oscillating wall: exact solutions, Int. J. Non-Lin. Mech., 39 (2004), 795-809.  doi: 10.1016/S0020-7462(03)00043-X.  Google Scholar

[11]

S. Kumar, A new fractional modeling arising in engineering sciences and its analytical approximate solution, Alexandria Eng. J., 52 (2013), 813-819.  doi: 10.1016/j.aej.2013.09.005.  Google Scholar

[12]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific Publishing, 2010. doi: 10.1142/9781848163300.  Google Scholar

[13]

N. MakrisG. F. Dargush and M. C. Constantinou, Dynamic analysis of generalized viscoelastic fluids, J. Eng. Mech., 119 (1993), 1663-1679.  doi: 10.1061/(ASCE)0733-9399(1993)119:8(1663).  Google Scholar

[14]

M. Mooney, Explicit formula for slip and fluidity, J. Rheol., 2 (1931), 210-222.  doi: 10.1122/1.2116364.  Google Scholar

[15]

C. L. M. H. Navier, Sur les lois du movement des fluids, Mem. Acad. R. Sa: Inst. Fr., 6 (1827), 389-440.   Google Scholar

[16]

I. Podlubny, Fractional Differential Equations, Academic Press, New York, 2009.  Google Scholar

[17]

I. J. Rao and K. Rajagopal, The effect of the slip boundary condition on the flow of fluids in a channel, Acta Mech, 135 (1999), 113-126.  doi: 10.1007/BF01305747.  Google Scholar

[18]

I. Siddique and D. Vieru, Stokes flows of a Newtonian fluid with fractional derivatives and slip at the wall, Int. Rev. Chem. Eng. (IRECHE), 3 (2011), 822-826.   Google Scholar

[19]

D. Vieru and A. A. Zafar, Some Couette flows of a Maxwell fluid with wall slip condition, Appl. Math. Inf. Sci., 7 (2013), 209-219.  doi: 10.12785/amis/070126.  Google Scholar

[20]

D. Vieru and A. Rauf, Stokes Flows of a Maxwell fluid with wall slip condition, Can. J. Phys, 89 (2011), 1061-1071.  doi: 10.1139/p11-099.  Google Scholar

show all references

References:
[1]

S. AbelmanE. Momoniat and T. Hayat, Couette flow of a third grade fluid with rotating frame and slip condition, Non-Linear Analysis: Real World Appl., 10 (2009), 3329-3334.  doi: 10.1016/j.nonrwa.2008.10.068.  Google Scholar

[2]

A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reactiondiffusion equation, Appl. Math. Comput., 1 (2016), 948-956.  doi: 10.1016/j.amc.2015.10.021.  Google Scholar

[3]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[4]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85.   Google Scholar

[5]

M. Caputo and M. Fabrizio, Damage and fatigue described by a fractional derivative model, J. Comput. Phys., 293 (2015), 400-408.  doi: 10.1016/j.jcp.2014.11.012.  Google Scholar

[6]

M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1-11.  doi: 10.18576/pfda/020101.  Google Scholar

[7]

M. A. Day, The non-slip boundary condition in fluid mechanics, Erkenntnis, 33 (1990), 285-296.  doi: 10.1007/BF00717588.  Google Scholar

[8]

L. Debnath and D. Bhatta, Integral Transforms and Their Applications, second ed., Chapman and Hall/CRC Press, Boca-Raton, 2007.  Google Scholar

[9]

A. Heibig and L. I. Palade, On the rest state stability of an objective fractional derivative, Journal of Mathematical Physics, 49 (2008), 043101, 22pp. doi: 10.1063/1.2907578.  Google Scholar

[10]

A. R. A. Khaled and K. Vafai, The effect of the slip condition on Stokes and Couette flows due to an oscillating wall: exact solutions, Int. J. Non-Lin. Mech., 39 (2004), 795-809.  doi: 10.1016/S0020-7462(03)00043-X.  Google Scholar

[11]

S. Kumar, A new fractional modeling arising in engineering sciences and its analytical approximate solution, Alexandria Eng. J., 52 (2013), 813-819.  doi: 10.1016/j.aej.2013.09.005.  Google Scholar

[12]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific Publishing, 2010. doi: 10.1142/9781848163300.  Google Scholar

[13]

N. MakrisG. F. Dargush and M. C. Constantinou, Dynamic analysis of generalized viscoelastic fluids, J. Eng. Mech., 119 (1993), 1663-1679.  doi: 10.1061/(ASCE)0733-9399(1993)119:8(1663).  Google Scholar

[14]

M. Mooney, Explicit formula for slip and fluidity, J. Rheol., 2 (1931), 210-222.  doi: 10.1122/1.2116364.  Google Scholar

[15]

C. L. M. H. Navier, Sur les lois du movement des fluids, Mem. Acad. R. Sa: Inst. Fr., 6 (1827), 389-440.   Google Scholar

[16]

I. Podlubny, Fractional Differential Equations, Academic Press, New York, 2009.  Google Scholar

[17]

I. J. Rao and K. Rajagopal, The effect of the slip boundary condition on the flow of fluids in a channel, Acta Mech, 135 (1999), 113-126.  doi: 10.1007/BF01305747.  Google Scholar

[18]

I. Siddique and D. Vieru, Stokes flows of a Newtonian fluid with fractional derivatives and slip at the wall, Int. Rev. Chem. Eng. (IRECHE), 3 (2011), 822-826.   Google Scholar

[19]

D. Vieru and A. A. Zafar, Some Couette flows of a Maxwell fluid with wall slip condition, Appl. Math. Inf. Sci., 7 (2013), 209-219.  doi: 10.12785/amis/070126.  Google Scholar

[20]

D. Vieru and A. Rauf, Stokes Flows of a Maxwell fluid with wall slip condition, Can. J. Phys, 89 (2011), 1061-1071.  doi: 10.1139/p11-099.  Google Scholar

Figure 1.  Geometry of flow
Figure 2.  Velocity profiles (VP) varus $y$, with $\beta = 0.4$, $t = 0.2$ for different values of $\alpha$ and when translation of the plate with a constant velocity $(g(t) = H(t))$
Figure 3.  VP varus $y$, with $\beta = 0.4$, $t = 0.4$ for different values of $\alpha$ and $g(t) = H(t)$
Figure 4.  VP varus $y$, with $\beta=0.4$, $t=0.8$ for different values of $\alpha$ and $g(t)=H(t)$
Figure 5.  VP varus $y$, with $\beta = 0.7$, $t = 0.2$ for different values of $\alpha$ and $g(t) = H(t)$
Figure 6.  VP varus $y$, with $\alpha = 0.3$, $t = 0.2$ for different values of $\beta$ and $g(t) = H(t)$
Figure 7.  VP varus $y$, with $\alpha = 0.6$, $t = 0.2$ for different values of $\beta$ and $g(t) = H(t)$
Figure 8.  VP varus $y$, with $\alpha = 0.9$, $t = 0.2$ for different values of $\beta$ and $g(t) = H(t)$
Figure 9.  VP varus $t$, with $\beta = 0.0$(no-slip), $y = 0.2$ for different values of $\alpha$ and $g(t) = H(t)$
Figure 10.  VP varus $t$, with $\beta = 0.4$, $y = 0.2$ for different values of $\alpha$ and $g(t) = H(t)$
Figure 11.  VP varus $t$, with $\beta = 0.7$, $y = 0.2$ for different values of $\alpha$ and $g(t) = H(t)$
Figure 12.  VP varus $y$, with $\beta = 0.4$, $t = 0.2$ for different values of $\alpha$ and when translation of the plate with a constant acceleration $(g(t) = t)$
Figure 13.  VP varus $y$, with $\beta = 0.4$, $t = 0.4$ for different values of $\alpha$ and $g(t) = t$
Figure 14.  VP varus $y$, with $\beta = 0.4$, $t = 0.8$ for different values of $\alpha$ and $g(t) = t$
Figure 15.  VP varus $y$, with $\beta = 0.7$, $t = 0.2$ for different values of $\alpha$ and $g(t) = t$
Figure 16.  VP varus $y$, with $\alpha = 0.3$, $t = 0.2$ for different values of $\beta$ and $g(t) = t$
Figure 17.  VP varus $y$, with $\alpha = 0.6$, $t = 0.2$ for different values of $\beta$ and $g(t) = t$
Figure 18.  VP varus $y$, with $\alpha = 0.9$, $t = 0.2$ for different values of $\beta$ and $g(t) = t$.
Figure 19.  VP varus $t$, with $\beta = 0.0$(no-slip), $y = 0.2$ for different values of $\alpha$ and $g(t) = t$
Figure 20.  VP varus $t$, with $\beta = 0.4$, $y = 0.2$ for different values of $\alpha$ and $g(t) = t$
Figure 21.  VP varus $t$, with $\beta = 0.0$, $y = 0.2$ for different values of $\alpha$ and $g(t) = t$
Figure 22.  VP varus $y$, with $\beta = 0.4$, $t = 0.2$ for different values of $\alpha$ and with the sinusoidal oscillations of the bottom plate $(g(t) = \sin t)$
Figure 23.  VP varus $y$, with $\beta = 0.4$, $t = 0.4$ for different values of $\alpha$ and $g(t) = \sin t$
Figure 24.  VP varus $y$, with $\beta = 0.4$, $t = 0.8$ for different values of $\alpha$ and $g(t) = \sin t$
Figure 25.  VP varus $y$, with $\beta = 0.7$, $t = 0.2$ for different values of $\alpha$ and $g(t) = \sin t$
Figure 26.  VP varus $y$, with $\alpha = 0.3$, $t = 0.2$ for different values of $\beta$ and $g(t) = \sin t$
Figure 27.  VP varus $y$, with $\alpha = 0.6$, $t = 0.2$ for different values of $\beta$ and $g(t) = \sin t$
Figure 28.  VP varus $y$, with $\alpha = 0.9$, $t = 0.2$ for different values of $\beta$ and $g(t) = \sin t$
Figure 29.  VP varus $t$, with $\beta = 0.0$(no-slip), $y = 0.2$ for different values of $\alpha$ and $g(t) = \sin t$
Figure 30.  VP varus $t$, with $\beta = 0.4$, $y = 0.2$ for different values of $\alpha$ and $g(t) = \sin t$
Figure 31.  VP varus $t$, with $\beta = 0.7$, $y = 0.2$ for different values of $\alpha$ and $g(t) = \sin t$
[1]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[2]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[3]

Shuyang Dai, Fengru Wang, Jerry Zhijian Yang, Cheng Yuan. A comparative study of atomistic-based stress evaluation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020322

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[5]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[6]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[7]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[8]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[9]

Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094

[10]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[11]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[12]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[13]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[14]

Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021007

[15]

Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168

[16]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[17]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[18]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[19]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[20]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (253)
  • HTML views (171)
  • Cited by (5)

[Back to Top]