# American Institute of Mathematical Sciences

June  2019, 12(3): 645-664. doi: 10.3934/dcdss.2019041

## Couette flows of a viscous fluid with slip effects and non-integer order derivative without singular kernel

 1 Department of Mathematics, School of Science, University of Management and Technology, C-Ⅱ Johar Town, Lahore 54770, Pakistan 2 Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, 9301, Bloemfontein, South Africa

* Corresponding author: abdonatangana@yahoo.fr, atanganaA@ufs.ac.za

Received  March 2017 Revised  July 2017 Published  September 2018

Couette flows of an incompressible viscous fluid with non-integer order derivative without singular kernel produced by the motion of a flat plate are analyzed under the slip condition at boundaries. An analytical transform approach is used to obtain the exact expressions for velocity and shear stress. Three particular cases from the general results with and without slip at the wall are obtained. These solutions, which are organized in simple forms in terms of exponential and trigonometric functions, can be conveniently engaged to obtain known solutions from the literature. The control of the new non-integer order derivative on the velocity of the fluid moreover a comparative study with an older model, is analyzed for some flows with practical applications. The non-integer order derivative with non-singular kernel is more appropriate for handling mathematical calculations of obtained solutions.

Citation: Muhammad Bilal Riaz, Naseer Ahmad Asif, Abdon Atangana, Muhammad Imran Asjad. Couette flows of a viscous fluid with slip effects and non-integer order derivative without singular kernel. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 645-664. doi: 10.3934/dcdss.2019041
##### References:
 [1] S. Abelman, E. Momoniat and T. Hayat, Couette flow of a third grade fluid with rotating frame and slip condition, Non-Linear Analysis: Real World Appl., 10 (2009), 3329-3334.  doi: 10.1016/j.nonrwa.2008.10.068. [2] A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reactiondiffusion equation, Appl. Math. Comput., 1 (2016), 948-956.  doi: 10.1016/j.amc.2015.10.021. [3] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A. [4] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. [5] M. Caputo and M. Fabrizio, Damage and fatigue described by a fractional derivative model, J. Comput. Phys., 293 (2015), 400-408.  doi: 10.1016/j.jcp.2014.11.012. [6] M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1-11.  doi: 10.18576/pfda/020101. [7] M. A. Day, The non-slip boundary condition in fluid mechanics, Erkenntnis, 33 (1990), 285-296.  doi: 10.1007/BF00717588. [8] L. Debnath and D. Bhatta, Integral Transforms and Their Applications, second ed., Chapman and Hall/CRC Press, Boca-Raton, 2007. [9] A. Heibig and L. I. Palade, On the rest state stability of an objective fractional derivative, Journal of Mathematical Physics, 49 (2008), 043101, 22pp. doi: 10.1063/1.2907578. [10] A. R. A. Khaled and K. Vafai, The effect of the slip condition on Stokes and Couette flows due to an oscillating wall: exact solutions, Int. J. Non-Lin. Mech., 39 (2004), 795-809.  doi: 10.1016/S0020-7462(03)00043-X. [11] S. Kumar, A new fractional modeling arising in engineering sciences and its analytical approximate solution, Alexandria Eng. J., 52 (2013), 813-819.  doi: 10.1016/j.aej.2013.09.005. [12] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific Publishing, 2010. doi: 10.1142/9781848163300. [13] N. Makris, G. F. Dargush and M. C. Constantinou, Dynamic analysis of generalized viscoelastic fluids, J. Eng. Mech., 119 (1993), 1663-1679.  doi: 10.1061/(ASCE)0733-9399(1993)119:8(1663). [14] M. Mooney, Explicit formula for slip and fluidity, J. Rheol., 2 (1931), 210-222.  doi: 10.1122/1.2116364. [15] C. L. M. H. Navier, Sur les lois du movement des fluids, Mem. Acad. R. Sa: Inst. Fr., 6 (1827), 389-440. [16] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 2009. [17] I. J. Rao and K. Rajagopal, The effect of the slip boundary condition on the flow of fluids in a channel, Acta Mech, 135 (1999), 113-126.  doi: 10.1007/BF01305747. [18] I. Siddique and D. Vieru, Stokes flows of a Newtonian fluid with fractional derivatives and slip at the wall, Int. Rev. Chem. Eng. (IRECHE), 3 (2011), 822-826. [19] D. Vieru and A. A. Zafar, Some Couette flows of a Maxwell fluid with wall slip condition, Appl. Math. Inf. Sci., 7 (2013), 209-219.  doi: 10.12785/amis/070126. [20] D. Vieru and A. Rauf, Stokes Flows of a Maxwell fluid with wall slip condition, Can. J. Phys, 89 (2011), 1061-1071.  doi: 10.1139/p11-099.

show all references

##### References:
 [1] S. Abelman, E. Momoniat and T. Hayat, Couette flow of a third grade fluid with rotating frame and slip condition, Non-Linear Analysis: Real World Appl., 10 (2009), 3329-3334.  doi: 10.1016/j.nonrwa.2008.10.068. [2] A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reactiondiffusion equation, Appl. Math. Comput., 1 (2016), 948-956.  doi: 10.1016/j.amc.2015.10.021. [3] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A. [4] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. [5] M. Caputo and M. Fabrizio, Damage and fatigue described by a fractional derivative model, J. Comput. Phys., 293 (2015), 400-408.  doi: 10.1016/j.jcp.2014.11.012. [6] M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1-11.  doi: 10.18576/pfda/020101. [7] M. A. Day, The non-slip boundary condition in fluid mechanics, Erkenntnis, 33 (1990), 285-296.  doi: 10.1007/BF00717588. [8] L. Debnath and D. Bhatta, Integral Transforms and Their Applications, second ed., Chapman and Hall/CRC Press, Boca-Raton, 2007. [9] A. Heibig and L. I. Palade, On the rest state stability of an objective fractional derivative, Journal of Mathematical Physics, 49 (2008), 043101, 22pp. doi: 10.1063/1.2907578. [10] A. R. A. Khaled and K. Vafai, The effect of the slip condition on Stokes and Couette flows due to an oscillating wall: exact solutions, Int. J. Non-Lin. Mech., 39 (2004), 795-809.  doi: 10.1016/S0020-7462(03)00043-X. [11] S. Kumar, A new fractional modeling arising in engineering sciences and its analytical approximate solution, Alexandria Eng. J., 52 (2013), 813-819.  doi: 10.1016/j.aej.2013.09.005. [12] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific Publishing, 2010. doi: 10.1142/9781848163300. [13] N. Makris, G. F. Dargush and M. C. Constantinou, Dynamic analysis of generalized viscoelastic fluids, J. Eng. Mech., 119 (1993), 1663-1679.  doi: 10.1061/(ASCE)0733-9399(1993)119:8(1663). [14] M. Mooney, Explicit formula for slip and fluidity, J. Rheol., 2 (1931), 210-222.  doi: 10.1122/1.2116364. [15] C. L. M. H. Navier, Sur les lois du movement des fluids, Mem. Acad. R. Sa: Inst. Fr., 6 (1827), 389-440. [16] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 2009. [17] I. J. Rao and K. Rajagopal, The effect of the slip boundary condition on the flow of fluids in a channel, Acta Mech, 135 (1999), 113-126.  doi: 10.1007/BF01305747. [18] I. Siddique and D. Vieru, Stokes flows of a Newtonian fluid with fractional derivatives and slip at the wall, Int. Rev. Chem. Eng. (IRECHE), 3 (2011), 822-826. [19] D. Vieru and A. A. Zafar, Some Couette flows of a Maxwell fluid with wall slip condition, Appl. Math. Inf. Sci., 7 (2013), 209-219.  doi: 10.12785/amis/070126. [20] D. Vieru and A. Rauf, Stokes Flows of a Maxwell fluid with wall slip condition, Can. J. Phys, 89 (2011), 1061-1071.  doi: 10.1139/p11-099.
Geometry of flow
Velocity profiles (VP) varus $y$, with $\beta = 0.4$, $t = 0.2$ for different values of $\alpha$ and when translation of the plate with a constant velocity $(g(t) = H(t))$
VP varus $y$, with $\beta = 0.4$, $t = 0.4$ for different values of $\alpha$ and $g(t) = H(t)$
VP varus $y$, with $\beta=0.4$, $t=0.8$ for different values of $\alpha$ and $g(t)=H(t)$
VP varus $y$, with $\beta = 0.7$, $t = 0.2$ for different values of $\alpha$ and $g(t) = H(t)$
VP varus $y$, with $\alpha = 0.3$, $t = 0.2$ for different values of $\beta$ and $g(t) = H(t)$
VP varus $y$, with $\alpha = 0.6$, $t = 0.2$ for different values of $\beta$ and $g(t) = H(t)$
VP varus $y$, with $\alpha = 0.9$, $t = 0.2$ for different values of $\beta$ and $g(t) = H(t)$
VP varus $t$, with $\beta = 0.0$(no-slip), $y = 0.2$ for different values of $\alpha$ and $g(t) = H(t)$
VP varus $t$, with $\beta = 0.4$, $y = 0.2$ for different values of $\alpha$ and $g(t) = H(t)$
VP varus $t$, with $\beta = 0.7$, $y = 0.2$ for different values of $\alpha$ and $g(t) = H(t)$
VP varus $y$, with $\beta = 0.4$, $t = 0.2$ for different values of $\alpha$ and when translation of the plate with a constant acceleration $(g(t) = t)$
VP varus $y$, with $\beta = 0.4$, $t = 0.4$ for different values of $\alpha$ and $g(t) = t$
VP varus $y$, with $\beta = 0.4$, $t = 0.8$ for different values of $\alpha$ and $g(t) = t$
VP varus $y$, with $\beta = 0.7$, $t = 0.2$ for different values of $\alpha$ and $g(t) = t$
VP varus $y$, with $\alpha = 0.3$, $t = 0.2$ for different values of $\beta$ and $g(t) = t$
VP varus $y$, with $\alpha = 0.6$, $t = 0.2$ for different values of $\beta$ and $g(t) = t$
VP varus $y$, with $\alpha = 0.9$, $t = 0.2$ for different values of $\beta$ and $g(t) = t$.
VP varus $t$, with $\beta = 0.0$(no-slip), $y = 0.2$ for different values of $\alpha$ and $g(t) = t$
VP varus $t$, with $\beta = 0.4$, $y = 0.2$ for different values of $\alpha$ and $g(t) = t$
VP varus $t$, with $\beta = 0.0$, $y = 0.2$ for different values of $\alpha$ and $g(t) = t$
VP varus $y$, with $\beta = 0.4$, $t = 0.2$ for different values of $\alpha$ and with the sinusoidal oscillations of the bottom plate $(g(t) = \sin t)$
VP varus $y$, with $\beta = 0.4$, $t = 0.4$ for different values of $\alpha$ and $g(t) = \sin t$
VP varus $y$, with $\beta = 0.4$, $t = 0.8$ for different values of $\alpha$ and $g(t) = \sin t$
VP varus $y$, with $\beta = 0.7$, $t = 0.2$ for different values of $\alpha$ and $g(t) = \sin t$
VP varus $y$, with $\alpha = 0.3$, $t = 0.2$ for different values of $\beta$ and $g(t) = \sin t$
VP varus $y$, with $\alpha = 0.6$, $t = 0.2$ for different values of $\beta$ and $g(t) = \sin t$
VP varus $y$, with $\alpha = 0.9$, $t = 0.2$ for different values of $\beta$ and $g(t) = \sin t$
VP varus $t$, with $\beta = 0.0$(no-slip), $y = 0.2$ for different values of $\alpha$ and $g(t) = \sin t$
VP varus $t$, with $\beta = 0.4$, $y = 0.2$ for different values of $\alpha$ and $g(t) = \sin t$
VP varus $t$, with $\beta = 0.7$, $y = 0.2$ for different values of $\alpha$ and $g(t) = \sin t$
 [1] Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057 [2] Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022014 [3] Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317 [4] Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 683-693. doi: 10.3934/dcdss.2020037 [5] Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430 [6] M. M. El-Dessoky, Muhammad Altaf Khan. Application of Caputo-Fabrizio derivative to a cancer model with unknown parameters. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3557-3575. doi: 10.3934/dcdss.2020429 [7] V. Torri. Numerical and dynamical analysis of undulation instability under shear stress. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 423-460. doi: 10.3934/dcdsb.2005.5.423 [8] Wojciech M. Zajączkowski. Stability of axially-symmetric solutions to incompressible magnetohydrodynamics with no azimuthal velocity and with only azimuthal magnetic field. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1447-1482. doi: 10.3934/cpaa.2019070 [9] Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060 [10] Okihiro Sawada. Analytic rates of solutions to the Euler equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1409-1415. doi: 10.3934/dcdss.2013.6.1409 [11] Venkatesan Govindaraj, Raju K. George. Controllability of fractional dynamical systems: A functional analytic approach. Mathematical Control and Related Fields, 2017, 7 (4) : 537-562. doi: 10.3934/mcrf.2017020 [12] Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282 [13] Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302 [14] Shakir Sh. Yusubov, Elimhan N. Mahmudov. Optimality conditions of singular controls for systems with Caputo fractional derivatives. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021182 [15] Eugenia N. Petropoulou, Panayiotis D. Siafarikas. A functional-analytic technique for the study of analytic solutions of PDEs. Conference Publications, 2015, 2015 (special) : 923-935. doi: 10.3934/proc.2015.0923 [16] Yukun Song, Yang Chen, Jun Yan, Shuai Chen. The existence of solutions for a shear thinning compressible non-Newtonian models. Electronic Research Archive, 2020, 28 (1) : 47-66. doi: 10.3934/era.2020004 [17] Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 539-560. doi: 10.3934/dcdss.2020030 [18] Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417 [19] Jacky Cresson, Fernando Jiménez, Sina Ober-Blöbaum. Continuous and discrete Noether's fractional conserved quantities for restricted calculus of variations. Journal of Geometric Mechanics, 2022, 14 (1) : 57-89. doi: 10.3934/jgm.2021012 [20] Claudianor O. Alves, Giovany M. Figueiredo, Gaetano Siciliano. Ground state solutions for fractional scalar field equations under a general critical nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2199-2215. doi: 10.3934/cpaa.2019099

2020 Impact Factor: 2.425