-
Previous Article
A real attractor non admitting a connected feasible open set
- DCDS-S Home
- This Issue
-
Next Article
Libration points in the restricted three-body problem: Euler angles, existence and stability
Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs
1. | Faculty of Information Studies, Novo Mesto, Slovenia |
2. | Institut für Informatik, Freie Universität Berlin, Takustraße, D-4195 Berlin, Germany |
$ (g,f,n',m) $ |
$ δ(G)≥\frac{b^{2}(i-1)}{a}+n'+2m $ |
$ n>\frac{(a+b)(i(a+b)+2m-2)+bn'}{a} $ |
$|N_{G}(x_{1})\cup N_{G}(x_{2})\cup···\cup N_{G}(x_{i})|≥\frac{b(n+n')}{a+b}$ |
$ \{x_{1},x_{2},..., x_{i}\} $ |
$ V(G) $ |
$ (g,f,m) $ |
References:
[1] |
E. I. Abouelmagd and J. L. G. Guirao,
On the perturbed restricted three-body problem, Appl. Math. Nonl. Sc., 1 (2016), 123-144.
|
[2] |
J. A. Bondy and U. S. R. Mutry, Graph Theory, Springer, Berlin, 2008.
doi: 10.1007/978-1-84628-970-5. |
[3] |
R. Y. Chang, G. Z. Liu and Y. Zhu,
Degree conditions of fractional ID-$k$-factor-critical graphs, Bull. Malays. Math. Sci. Soc., 33 (2010), 355-360.
|
[4] |
W. Gao, Some Results on Fractional Deleted Graphs, Doctoral disdertation of Soochow university, 2012. |
[5] |
W. Gao, L. Liang, T. W. Xu and J. X. Zhou,
Degree conditions for fractional $ (g,f,n',m) $-critical deleted graphs and fractional ID-$ (g,f,m) $-deleted graphs, Bull. Malays. Math. Sci. Soc., 39 (2016), 315-330.
doi: 10.1007/s40840-015-0194-1. |
[6] |
W. Gao, Y. Guo and K. Y. Wang,
Ontology algorithm using singular value decomposition and applied in multidisciplinary, Cluster Comput., 19 (2016), 2201-2210.
|
[7] |
W. Gao, L. Liang, T. W. Xu and J. X. Zhou,
Tight toughness condition for fractional $(g, f, n)$-critical graphs, J. Korean Math. Soc., 51 (2014), 55-65.
doi: 10.4134/JKMS.2014.51.1.055. |
[8] |
W. Gao and W. F. Wang,
The fifth geometric arithmetic index of bridge graph and carbon nanocones, J. Differ. Equ. Appl., 23 (2017), 100-109.
doi: 10.1080/10236198.2016.1197214. |
[9] |
W. Gao and W. F. Wang,
The eccentric connectivity polynomial of two classes of nanotubes, Chaos Soliton. Fract., 89 (2016), 290-294.
doi: 10.1016/j.chaos.2015.11.035. |
[10] |
W. Gao, J. L. G. Guirao and H. L. Wu,
Two tight independent set conditions for fractional $(g, f, m)$-deleted graphs systems, Qual. Theory Dyn. Syst., 17 (2018), 231-243.
doi: 10.1007/s12346-016-0222-z. |
[11] |
J. L. G. Guirao and A. C. J. Luo,
New trends in nonlinear dynamics and chaoticity, Nonlinear Dynam., 84 (2016), 1-2.
doi: 10.1007/s11071-016-2656-x. |
[12] |
S. Z. Zhou, Z. R. Sun and Z. R. Xu,
A result on $r$-orthogonal factorizations in digraphs, Eur. J. Combin., 65 (2017), 15-23.
doi: 10.1016/j.ejc.2017.05.001. |
[13] |
S. Z. Zhou, F. Yang and Z. R. Sun,
A neighborhood condition for fractional ID-$[a, b]$-factor-critical graphs, Discuss. Mathe. Graph T., 36 (2016), 409-418.
doi: 10.7151/dmgt.1864. |
[14] |
S. Z. Zhou, L. Xu and Y. Xu,
A sufficient condition for the existence of a $k$-factor excluding a given $r$-factor, Appl. Math. Nonl. Sc., 2 (2017), 13-20.
|
[15] |
S. Z. Zhou, Some Results about Component Factors in Graphs, RAIRO-Oper. Res., 2017.
doi: 10.1051/ro/2017045. |
[16] |
S. Z. Zhou, Z. R. Sun and H. Liu,
A minimum degree condition for fractional ID-[$ a,b $]-factor-critical graphs, Bull. Aust. Math. Soc., 86 (2012), 177-183.
doi: 10.1017/S0004972711003467. |
show all references
References:
[1] |
E. I. Abouelmagd and J. L. G. Guirao,
On the perturbed restricted three-body problem, Appl. Math. Nonl. Sc., 1 (2016), 123-144.
|
[2] |
J. A. Bondy and U. S. R. Mutry, Graph Theory, Springer, Berlin, 2008.
doi: 10.1007/978-1-84628-970-5. |
[3] |
R. Y. Chang, G. Z. Liu and Y. Zhu,
Degree conditions of fractional ID-$k$-factor-critical graphs, Bull. Malays. Math. Sci. Soc., 33 (2010), 355-360.
|
[4] |
W. Gao, Some Results on Fractional Deleted Graphs, Doctoral disdertation of Soochow university, 2012. |
[5] |
W. Gao, L. Liang, T. W. Xu and J. X. Zhou,
Degree conditions for fractional $ (g,f,n',m) $-critical deleted graphs and fractional ID-$ (g,f,m) $-deleted graphs, Bull. Malays. Math. Sci. Soc., 39 (2016), 315-330.
doi: 10.1007/s40840-015-0194-1. |
[6] |
W. Gao, Y. Guo and K. Y. Wang,
Ontology algorithm using singular value decomposition and applied in multidisciplinary, Cluster Comput., 19 (2016), 2201-2210.
|
[7] |
W. Gao, L. Liang, T. W. Xu and J. X. Zhou,
Tight toughness condition for fractional $(g, f, n)$-critical graphs, J. Korean Math. Soc., 51 (2014), 55-65.
doi: 10.4134/JKMS.2014.51.1.055. |
[8] |
W. Gao and W. F. Wang,
The fifth geometric arithmetic index of bridge graph and carbon nanocones, J. Differ. Equ. Appl., 23 (2017), 100-109.
doi: 10.1080/10236198.2016.1197214. |
[9] |
W. Gao and W. F. Wang,
The eccentric connectivity polynomial of two classes of nanotubes, Chaos Soliton. Fract., 89 (2016), 290-294.
doi: 10.1016/j.chaos.2015.11.035. |
[10] |
W. Gao, J. L. G. Guirao and H. L. Wu,
Two tight independent set conditions for fractional $(g, f, m)$-deleted graphs systems, Qual. Theory Dyn. Syst., 17 (2018), 231-243.
doi: 10.1007/s12346-016-0222-z. |
[11] |
J. L. G. Guirao and A. C. J. Luo,
New trends in nonlinear dynamics and chaoticity, Nonlinear Dynam., 84 (2016), 1-2.
doi: 10.1007/s11071-016-2656-x. |
[12] |
S. Z. Zhou, Z. R. Sun and Z. R. Xu,
A result on $r$-orthogonal factorizations in digraphs, Eur. J. Combin., 65 (2017), 15-23.
doi: 10.1016/j.ejc.2017.05.001. |
[13] |
S. Z. Zhou, F. Yang and Z. R. Sun,
A neighborhood condition for fractional ID-$[a, b]$-factor-critical graphs, Discuss. Mathe. Graph T., 36 (2016), 409-418.
doi: 10.7151/dmgt.1864. |
[14] |
S. Z. Zhou, L. Xu and Y. Xu,
A sufficient condition for the existence of a $k$-factor excluding a given $r$-factor, Appl. Math. Nonl. Sc., 2 (2017), 13-20.
|
[15] |
S. Z. Zhou, Some Results about Component Factors in Graphs, RAIRO-Oper. Res., 2017.
doi: 10.1051/ro/2017045. |
[16] |
S. Z. Zhou, Z. R. Sun and H. Liu,
A minimum degree condition for fractional ID-[$ a,b $]-factor-critical graphs, Bull. Aust. Math. Soc., 86 (2012), 177-183.
doi: 10.1017/S0004972711003467. |
[1] |
Wei Gao, Juan Luis García Guirao, Mahmoud Abdel-Aty, Wenfei Xi. An independent set degree condition for fractional critical deleted graphs. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 877-886. doi: 10.3934/dcdss.2019058 |
[2] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control and Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[3] |
Günter Leugering, Gisèle Mophou, Maryse Moutamal, Mahamadi Warma. Optimal control problems of parabolic fractional Sturm-Liouville equations in a star graph. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022015 |
[4] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks and Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003 |
[5] |
Ruiling Tian, Dequan Yue, Wuyi Yue. Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy. Journal of Industrial and Management Optimization, 2015, 11 (3) : 715-731. doi: 10.3934/jimo.2015.11.715 |
[6] |
Adrian Korban, Serap Sahinkaya, Deniz Ustun. New type I binary $[72, 36, 12]$ self-dual codes from $M_6(\mathbb{F}_2)G$ - Group matrix rings by a hybrid search technique based on a neighbourhood-virus optimisation algorithm. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022032 |
[7] |
Philip M. J. Trevelyan. Approximating the large time asymptotic reaction zone solution for fractional order kinetics $A^n B^m$. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 219-234. doi: 10.3934/dcdss.2012.5.219 |
[8] |
Lijia Yan. Some properties of a class of $(F,E)$-$G$ generalized convex functions. Numerical Algebra, Control and Optimization, 2013, 3 (4) : 615-625. doi: 10.3934/naco.2013.3.615 |
[9] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[10] |
Oded Schramm. Hyperfinite graph limits. Electronic Research Announcements, 2008, 15: 17-23. doi: 10.3934/era.2008.15.17 |
[11] |
J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413 |
[12] |
John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16. |
[13] |
Roberto De Leo, James A. Yorke. The graph of the logistic map is a tower. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5243-5269. doi: 10.3934/dcds.2021075 |
[14] |
Sheng Zhu, Jinting Wang. Strategic behavior and optimal strategies in an M/G/1 queue with Bernoulli vacations. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1297-1322. doi: 10.3934/jimo.2018008 |
[15] |
Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2022, 16 (3) : 643-665. doi: 10.3934/amc.2020127 |
[16] |
Roy H. Goodman. NLS bifurcations on the bowtie combinatorial graph and the dumbbell metric graph. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2203-2232. doi: 10.3934/dcds.2019093 |
[17] |
Mario Roy, Mariusz Urbański. Random graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 261-298. doi: 10.3934/dcds.2011.30.261 |
[18] |
Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei. HERMES: Persistent spectral graph software. Foundations of Data Science, 2021, 3 (1) : 67-97. doi: 10.3934/fods.2021006 |
[19] |
Dominique Zosso, Braxton Osting. A minimal surface criterion for graph partitioning. Inverse Problems and Imaging, 2016, 10 (4) : 1149-1180. doi: 10.3934/ipi.2016036 |
[20] |
Mario Jorge Dias Carneiro, Rafael O. Ruggiero. On the graph theorem for Lagrangian minimizing tori. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6029-6045. doi: 10.3934/dcds.2018260 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]