The problem of data transmission in communication network can betransformed into the problem of fractional factor existing in graph theory. Inrecent years, the data transmission problem in the specificnetwork conditions has received a great deal of attention, and itraises new demands to the corresponding mathematical model. Underthis background, many advanced results are presented on fractionalcritical deleted graphs and fractional ID deleted graphs. In thispaper, we determine that $G$ is a fractional$ (g,f,n',m) $-critical deleted graph if$ δ(G)≥\frac{b^{2}(i-1)}{a}+n'+2m $, $ n>\frac{(a+b)(i(a+b)+2m-2)+bn'}{a} $, and
$|N_{G}(x_{1})\cup N_{G}(x_{2})\cup···\cup N_{G}(x_{i})|≥\frac{b(n+n')}{a+b}$
for any independent subset $ \{x_{1},x_{2},..., x_{i}\} $ of $ V(G) $. Furthermore, the independent set neighborhood union condition for a graph to be fractional ID-$ (g,f,m) $-deleted is raised. Some examples will be manifested to show the sharpness of independent set neighborhood union conditions.
Citation: |
E. I. Abouelmagd
and J. L. G. Guirao
, On the perturbed restricted three-body problem, Appl. Math. Nonl. Sc., 1 (2016)
, 123-144.
![]() |
|
J. A. Bondy and U. S. R. Mutry, Graph Theory, Springer, Berlin, 2008.
doi: 10.1007/978-1-84628-970-5.![]() ![]() ![]() |
|
R. Y. Chang
, G. Z. Liu
and Y. Zhu
, Degree conditions of fractional ID-$k$-factor-critical graphs, Bull. Malays. Math. Sci. Soc., 33 (2010)
, 355-360.
![]() ![]() |
|
W. Gao, Some Results on Fractional Deleted Graphs, Doctoral disdertation of Soochow university, 2012.
![]() |
|
W. Gao
, L. Liang
, T. W. Xu
and J. X. Zhou
, Degree conditions for fractional $ (g,f,n',m) $-critical deleted graphs and fractional ID-$ (g,f,m) $-deleted graphs, Bull. Malays. Math. Sci. Soc., 39 (2016)
, 315-330.
doi: 10.1007/s40840-015-0194-1.![]() ![]() ![]() |
|
W. Gao
, Y. Guo
and K. Y. Wang
, Ontology algorithm using singular value decomposition and applied in multidisciplinary, Cluster Comput., 19 (2016)
, 2201-2210.
![]() |
|
W. Gao
, L. Liang
, T. W. Xu
and J. X. Zhou
, Tight toughness condition for fractional $(g, f, n)$-critical graphs, J. Korean Math. Soc., 51 (2014)
, 55-65.
doi: 10.4134/JKMS.2014.51.1.055.![]() ![]() ![]() |
|
W. Gao
and W. F. Wang
, The fifth geometric arithmetic index of bridge graph and carbon nanocones, J. Differ. Equ. Appl., 23 (2017)
, 100-109.
doi: 10.1080/10236198.2016.1197214.![]() ![]() ![]() |
|
W. Gao
and W. F. Wang
, The eccentric connectivity polynomial of two classes of nanotubes, Chaos Soliton. Fract., 89 (2016)
, 290-294.
doi: 10.1016/j.chaos.2015.11.035.![]() ![]() ![]() |
|
W. Gao
, J. L. G. Guirao
and H. L. Wu
, Two tight independent set conditions for fractional $(g, f, m)$-deleted graphs systems, Qual. Theory Dyn. Syst., 17 (2018)
, 231-243.
doi: 10.1007/s12346-016-0222-z.![]() ![]() ![]() |
|
J. L. G. Guirao
and A. C. J. Luo
, New trends in nonlinear dynamics and chaoticity, Nonlinear Dynam., 84 (2016)
, 1-2.
doi: 10.1007/s11071-016-2656-x.![]() ![]() ![]() |
|
S. Z. Zhou
, Z. R. Sun
and Z. R. Xu
, A result on $r$-orthogonal factorizations in digraphs, Eur. J. Combin., 65 (2017)
, 15-23.
doi: 10.1016/j.ejc.2017.05.001.![]() ![]() ![]() |
|
S. Z. Zhou
, F. Yang
and Z. R. Sun
, A neighborhood condition for fractional ID-$[a, b]$-factor-critical graphs, Discuss. Mathe. Graph T., 36 (2016)
, 409-418.
doi: 10.7151/dmgt.1864.![]() ![]() ![]() |
|
S. Z. Zhou
, L. Xu
and Y. Xu
, A sufficient condition for the existence of a $k$-factor excluding a given $r$-factor, Appl. Math. Nonl. Sc., 2 (2017)
, 13-20.
![]() |
|
S. Z. Zhou, Some Results about Component Factors in Graphs, RAIRO-Oper. Res., 2017.
doi: 10.1051/ro/2017045.![]() ![]() |
|
S. Z. Zhou
, Z. R. Sun
and H. Liu
, A minimum degree condition for fractional ID-[$ a,b $]-factor-critical graphs, Bull. Aust. Math. Soc., 86 (2012)
, 177-183.
doi: 10.1017/S0004972711003467.![]() ![]() ![]() |