
-
Previous Article
Collaborative filtering recommendation algorithm towards intelligent community
- DCDS-S Home
- This Issue
-
Next Article
On the design of full duplex wireless system with chaotic sequences
Total factor productivity growth and technological change in the telecommunications industry
School of Economics and Management, Beijing University of Posts and Telecommunications, No.10 Xi Tu Cheng Road, Haidian District, Beijing 100876, China |
The fast growing telecommunications industry in China has been experiencing dramatic technological change and substantial productivity growth. The actual productivity growth pattern in the sector, however, need to be empirically examined. In this paper, using input and output data at the provincial level, we employ DEA-based Malmquist productivity index to estimate productivity change, technological change and relative efficiency change in China's telecommunications industry for the period spanning the years from 2011 to 2015. The results show that based on our sample, the productivity improved by 22.9% per annum, which was exclusively due to an average of 25.5% technological progress in the industry production function, while the average efficiency change is slightly negative. Our results also indicate that regions with relatively low levels of telecommunications (and economic) development have a greater chance and ability of enhancing telecommunications productivity growth through technological catch-up. In addition, we find that the industry experienced significantly higher productivity growth and technological progress in the later sample period between 2013 and 2015 than in the early period between 2011 and 2013.
References:
[1] |
M. Abramovitz, Resource and output trends in the united states since 1870, in Resource and
Output Trends in the United States Since 1870, NBER, 1956, 1–23. |
[2] |
R. D. Banker, Z. Cao, N. Menon and R. Natarajan,
Technological progress and productivity growth in the us mobile telecommunications industry, Annals of Operations Research, 173 (2010), 77-87.
|
[3] |
M. Calvo, J. I. M. Torcal and L. R. García,
A new stepsize change technique for adams methods, Applied Mathematics and Nonlinear Sciences, 1 (2016), 547-558.
|
[4] |
D. W. Caves, L. R. Christensen and W. E. Diewert, The economic theory of index numbers and the measurement of input, output, and productivity, Econometrica: Journal of the
Econometric Society, 1393–1414. |
[5] |
A. Charnes, W. W. Cooper and E. Rhodes,
Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444.
doi: 10.1016/0377-2217(78)90138-8. |
[6] |
H. W. Chesbrough and D. J. Teece,
When is virtual virtuous, Harvard Business Review, 74 (1996), 65-73.
|
[7] |
T. Coelli, A guide to deap version 2.1: A data envelopment analysis (computer) program,
Centre for Efficiency and Productivity Analysis, University of New England, Australia. |
[8] |
L. Correa,
The economic impact of telecommunications diffusion on uk productivity growth, Information Economics and Policy, 18 (2006), 385-404.
|
[9] |
A. Datta and S. Agarwal,
Telecommunications and economic growth: A panel data approach, Applied Economics, 36 (2004), 1649-1654.
|
[10] |
M. Denny, M. A. Fuss and L. Waverman,
The Measurement and Interpretation of Total Factor Productivity in Regulated Industries, with an Application to Canadian Telecommunications, Institute for Policy Analysis, University of Toronto, 1979. |
[11] |
W. E. Diewert,
Exact and superlative index numbers, Journal of Econometrics, 4 (1976), 115-145.
doi: 10.1016/0304-4076(76)90009-9. |
[12] |
A. Dutta,
Telecommunications and economic activity: An analysis of granger causality, Journal of Management Information Systems, 17 (2001), 71-95.
|
[13] |
R. Färe and S. Grosskopf,
Malmquist productivity indexes and fisher ideal indexes, The Economic Journal, 102 (1992), 158-160.
|
[14] |
R. Färe, S. Grosskopf, M. Norris and Z. Zhang,
Productivity growth, technical progress, and efficiency change in industrialized countries, The American economic review, (), 66-83.
|
[15] |
R. Färe, S. Grosskopf and P. Roos,
Productivity and quality changes in swedish pharmacies, International Journal of Production Economics, 39 (1995), 137-144.
|
[16] |
Y. Gao, M. Farahani and W. Gao,
Ontology optimization tactics via distance calculating, Applied Mathematics and Nonlinear Sciences, 1 (2016), 154-169.
|
[17] |
D. I. Giokas and G. C. Pentzaropoulos,
Evaluating productive efficiency in telecommunications: Evidence from greece, Telecommunications Policy, 24 (2000), 781-794.
|
[18] |
J. A. Hausman and W. E. Taylor, Partial deregulation in telecommunications: An update,
Journal of Competition Law and Economics. |
[19] |
E. Hisali and B. Yawe,
Total factor productivity growth in uganda's telecommunications industry, Telecommunications Policy, 35 (2011), 12-19.
|
[20] |
H. Kang,
Technology management in services: Knowledge-based vs. knowledge-embedded services, Strategic Change, 15 (2006), 67-74.
|
[21] |
F. Kiss, Productivity gains in bell canada,
Economic Analysis of Telecommunications: Theory and Applications, Amsterdam: North-Holland. |
[22] |
J.-J. Laffont and J. Tirole,
Competition in Telecommunications, MIT press, 2001. |
[23] |
P. Lall, A. M. Featherstone and D. W. Norman,
Productivity growth in the western hemisphere (1978-94): The caribbean in perspective, Journal of Productivity Analysis, 17 (2002), 213-231.
|
[24] |
P.-L. Lam and T. Lam,
Total factor productivity measures for hong kong telephone, Telecommunications Policy, 29 (2005), 53-68.
|
[25] |
P.-L. Lam and A. Shiu,
Productivity analysis of the telecommunications sector in China, Telecommunications Policy, 32 (2008), 559-571.
|
[26] |
D. Lien and Y. Peng,
Competition and production efficiency: Telecommunications in oecd countries, Information Economics and Policy, 13 (2001), 51-76.
|
[27] |
G. Madden and S. J. Savage,
Telecommunications productivity, catch-up and innovation, Telecommunications Policy, 23 (1999), 65-81.
|
[28] |
S. K. Majumdar,
Does new technology adoption pay? electronic switching patterns and firm-level performance in us telecommunications, Research Policy, 24 (1995), 803-822.
|
[29] |
S. Malmquist,
Index numbers and indifference surfaces, Trabajos de Estadística, 4 (1953), 209-242.
doi: 10.1007/BF03006863. |
[30] |
MIIT, Statistical bulletin of china's telecommunications industry in 2016,
http://www.miit.gov.cn/n1146290/n1146402/n1146455/c5471508/content.html. |
[31] |
M. I. Nadiri and M. Schankerman, The structure of production, technological change, and the rate of growth of total factor productivity in the bell system, 1979. |
[32] |
M. Nishimizu and J. M. Page, Total factor productivity growth, technological progress and
technical efficiency change: dimensions of productivity change in yugoslavia, 1965-78, The
Economic Journal, 92 (1982), 920–936. |
[33] |
H. Oniki, T. H. Oum, R. Stevenson and Y. Zhang,
The productivity effects of the liberalization of japanese telecommunication policy, Journal of Productivity Analysis, 5 (1994), 63-79.
|
[34] |
J. B. Quinn and M. N. Baily,
Information technology: Increasing productivity in services, The Academy of Management Executive, 8 (1994), 28-48.
|
[35] |
R. W. Shepherd,
Theory of Cost and Production Functions, Princeton University Press, 1970. |
[36] |
N. D. Uri,
Measuring productivity change in telecommunications, Telecommunications Policy, 24 (2000), 439-452.
|
[37] |
N. D. Uri,
Productivity change, technical progress, and efficiency improvement in telecommunications, Review of Industrial Organization, 18 (2001), 283-300.
|
[38] |
C.-H. Yoon,
Liberalisation policy, industry structure and productivity changes in korea's telecommunications industry, Telecommunications Policy, 23 (1999), 289-306.
|
show all references
References:
[1] |
M. Abramovitz, Resource and output trends in the united states since 1870, in Resource and
Output Trends in the United States Since 1870, NBER, 1956, 1–23. |
[2] |
R. D. Banker, Z. Cao, N. Menon and R. Natarajan,
Technological progress and productivity growth in the us mobile telecommunications industry, Annals of Operations Research, 173 (2010), 77-87.
|
[3] |
M. Calvo, J. I. M. Torcal and L. R. García,
A new stepsize change technique for adams methods, Applied Mathematics and Nonlinear Sciences, 1 (2016), 547-558.
|
[4] |
D. W. Caves, L. R. Christensen and W. E. Diewert, The economic theory of index numbers and the measurement of input, output, and productivity, Econometrica: Journal of the
Econometric Society, 1393–1414. |
[5] |
A. Charnes, W. W. Cooper and E. Rhodes,
Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444.
doi: 10.1016/0377-2217(78)90138-8. |
[6] |
H. W. Chesbrough and D. J. Teece,
When is virtual virtuous, Harvard Business Review, 74 (1996), 65-73.
|
[7] |
T. Coelli, A guide to deap version 2.1: A data envelopment analysis (computer) program,
Centre for Efficiency and Productivity Analysis, University of New England, Australia. |
[8] |
L. Correa,
The economic impact of telecommunications diffusion on uk productivity growth, Information Economics and Policy, 18 (2006), 385-404.
|
[9] |
A. Datta and S. Agarwal,
Telecommunications and economic growth: A panel data approach, Applied Economics, 36 (2004), 1649-1654.
|
[10] |
M. Denny, M. A. Fuss and L. Waverman,
The Measurement and Interpretation of Total Factor Productivity in Regulated Industries, with an Application to Canadian Telecommunications, Institute for Policy Analysis, University of Toronto, 1979. |
[11] |
W. E. Diewert,
Exact and superlative index numbers, Journal of Econometrics, 4 (1976), 115-145.
doi: 10.1016/0304-4076(76)90009-9. |
[12] |
A. Dutta,
Telecommunications and economic activity: An analysis of granger causality, Journal of Management Information Systems, 17 (2001), 71-95.
|
[13] |
R. Färe and S. Grosskopf,
Malmquist productivity indexes and fisher ideal indexes, The Economic Journal, 102 (1992), 158-160.
|
[14] |
R. Färe, S. Grosskopf, M. Norris and Z. Zhang,
Productivity growth, technical progress, and efficiency change in industrialized countries, The American economic review, (), 66-83.
|
[15] |
R. Färe, S. Grosskopf and P. Roos,
Productivity and quality changes in swedish pharmacies, International Journal of Production Economics, 39 (1995), 137-144.
|
[16] |
Y. Gao, M. Farahani and W. Gao,
Ontology optimization tactics via distance calculating, Applied Mathematics and Nonlinear Sciences, 1 (2016), 154-169.
|
[17] |
D. I. Giokas and G. C. Pentzaropoulos,
Evaluating productive efficiency in telecommunications: Evidence from greece, Telecommunications Policy, 24 (2000), 781-794.
|
[18] |
J. A. Hausman and W. E. Taylor, Partial deregulation in telecommunications: An update,
Journal of Competition Law and Economics. |
[19] |
E. Hisali and B. Yawe,
Total factor productivity growth in uganda's telecommunications industry, Telecommunications Policy, 35 (2011), 12-19.
|
[20] |
H. Kang,
Technology management in services: Knowledge-based vs. knowledge-embedded services, Strategic Change, 15 (2006), 67-74.
|
[21] |
F. Kiss, Productivity gains in bell canada,
Economic Analysis of Telecommunications: Theory and Applications, Amsterdam: North-Holland. |
[22] |
J.-J. Laffont and J. Tirole,
Competition in Telecommunications, MIT press, 2001. |
[23] |
P. Lall, A. M. Featherstone and D. W. Norman,
Productivity growth in the western hemisphere (1978-94): The caribbean in perspective, Journal of Productivity Analysis, 17 (2002), 213-231.
|
[24] |
P.-L. Lam and T. Lam,
Total factor productivity measures for hong kong telephone, Telecommunications Policy, 29 (2005), 53-68.
|
[25] |
P.-L. Lam and A. Shiu,
Productivity analysis of the telecommunications sector in China, Telecommunications Policy, 32 (2008), 559-571.
|
[26] |
D. Lien and Y. Peng,
Competition and production efficiency: Telecommunications in oecd countries, Information Economics and Policy, 13 (2001), 51-76.
|
[27] |
G. Madden and S. J. Savage,
Telecommunications productivity, catch-up and innovation, Telecommunications Policy, 23 (1999), 65-81.
|
[28] |
S. K. Majumdar,
Does new technology adoption pay? electronic switching patterns and firm-level performance in us telecommunications, Research Policy, 24 (1995), 803-822.
|
[29] |
S. Malmquist,
Index numbers and indifference surfaces, Trabajos de Estadística, 4 (1953), 209-242.
doi: 10.1007/BF03006863. |
[30] |
MIIT, Statistical bulletin of china's telecommunications industry in 2016,
http://www.miit.gov.cn/n1146290/n1146402/n1146455/c5471508/content.html. |
[31] |
M. I. Nadiri and M. Schankerman, The structure of production, technological change, and the rate of growth of total factor productivity in the bell system, 1979. |
[32] |
M. Nishimizu and J. M. Page, Total factor productivity growth, technological progress and
technical efficiency change: dimensions of productivity change in yugoslavia, 1965-78, The
Economic Journal, 92 (1982), 920–936. |
[33] |
H. Oniki, T. H. Oum, R. Stevenson and Y. Zhang,
The productivity effects of the liberalization of japanese telecommunication policy, Journal of Productivity Analysis, 5 (1994), 63-79.
|
[34] |
J. B. Quinn and M. N. Baily,
Information technology: Increasing productivity in services, The Academy of Management Executive, 8 (1994), 28-48.
|
[35] |
R. W. Shepherd,
Theory of Cost and Production Functions, Princeton University Press, 1970. |
[36] |
N. D. Uri,
Measuring productivity change in telecommunications, Telecommunications Policy, 24 (2000), 439-452.
|
[37] |
N. D. Uri,
Productivity change, technical progress, and efficiency improvement in telecommunications, Review of Industrial Organization, 18 (2001), 283-300.
|
[38] |
C.-H. Yoon,
Liberalisation policy, industry structure and productivity changes in korea's telecommunications industry, Telecommunications Policy, 23 (1999), 289-306.
|

DMU | GRP (billion yuan) | Population (million) | Per capita GRP(yuan) | Pr1 | Pr2 | Pr3 |
Eastern region | ||||||
Beijing | 2301 | 21.7 | 106009 | 36.2 | 181.7 | 76.5 |
Tianjin | 1654 | 15.5 | 76178 | 22.2 | 88.5 | 63 |
Liaoning | 2867 | 43.8 | 132054 | 23.7 | 97.9 | 62.2 |
Shanghai | 2512 | 24.2 | 115723 | 33 | 129.7 | 73.1 |
Jiangsu | 7012 | 79.8 | 322968 | 24.7 | 100.2 | 55.5 |
Zhejiang | 4289 | 55.4 | 197543 | 26.6 | 131.5 | 65.3 |
Fujian | 2598 | 38.4 | 119668 | 23.2 | 108.2 | 69.6 |
Shandong | 6300 | 98.5 | 290200 | 11.4 | 92.3 | 48.9 |
Guangdong | 7281 | 108.5 | 335387 | 25.9 | 133.5 | 72.4 |
Hainan | 370 | 9.1 | 17056 | 18.8 | 98.2 | 51.6 |
Whole region | 37185 | 495 | 75157 | 24.5 | 116.2 | 63.8 |
Central region | ||||||
Hebei | 2981 | 74.3 | 137292 | 13.2 | 82.6 | 50.5 |
Shanxi | 1277 | 36.6 | 58805 | 12.1 | 88.5 | 54.2 |
Jilin | 1406 | 27.5 | 64777 | 20.8 | 91.2 | 47.7 |
Heilongjiang | 1508 | 38.1 | 69478 | 15.6 | 87.4 | 44.5 |
Anhui | 2201 | 61.4 | 101362 | 12 | 68.2 | 39.4 |
Jiangxi | 1672 | 45.7 | 77033 | 12.5 | 66.4 | 38.7 |
Henan | 3700 | 94.8 | 170438 | 10.7 | 79.5 | 39.2 |
Hubei | 2955 | 58.5 | 136113 | 14.9 | 77.4 | 46.8 |
Hunan | 2890 | 67.8 | 133129 | 11.6 | 69.2 | 39.9 |
Whole region | 20590 | 505 | 40790 | 14 | 79 | 45 |
Western region | ||||||
Inner Mongolia | 1783 | 25.1 | 82135 | 12.9 | 94.7 | 50.3 |
Guangxi | 1680 | 48 | 77398 | 9.2 | 75 | 42.8 |
Chongqing | 1572 | 30.2 | 72396 | 18.6 | 90.8 | 48.3 |
Sichuan | 3005 | 82 | 138430 | 16.5 | 82.9 | 40 |
Guizhou | 1050 | 35.3 | 48377 | 8.9 | 83.3 | 38.4 |
Yunnan | 1362 | 47.4 | 62732 | 8 | 78.9 | 37.4 |
Tibet | 103 | 3.2 | 4728 | 10.8 | 82.9 | 44.6 |
Shanxi | 1277 | 36.6 | 58805 | 12.1 | 88.5 | 54.2 |
Gansu | 679 | 26 | 31277 | 12.5 | 81 | 38.8 |
Qinghai | 242 | 5.9 | 11133 | 17.7 | 87.9 | 54.5 |
Ningxia | 291 | 6.7 | 13412 | 12.6 | 95.3 | 49.3 |
Xinjiang | 932 | 23.6 | 42952 | 21.2 | 86 | 54.9 |
Whole region | 13976 | 370 | 37770 | 13.4 | 85.6 | 46.1 |
Whole country | 71751 | 1370 | 52389 | 17.1 | 93.5 | 51.4 |
Note: DMU = Decision-making unit, GRP = Gross regional product, Pr1 = Fixed-line penetration rate(per 100 persons), Pr2 = Mobile penetration rate(per 100 persons), Pr3 = Internet penetration rate(%). Source: China Statistical Yearbook 2016. |
DMU | GRP (billion yuan) | Population (million) | Per capita GRP(yuan) | Pr1 | Pr2 | Pr3 |
Eastern region | ||||||
Beijing | 2301 | 21.7 | 106009 | 36.2 | 181.7 | 76.5 |
Tianjin | 1654 | 15.5 | 76178 | 22.2 | 88.5 | 63 |
Liaoning | 2867 | 43.8 | 132054 | 23.7 | 97.9 | 62.2 |
Shanghai | 2512 | 24.2 | 115723 | 33 | 129.7 | 73.1 |
Jiangsu | 7012 | 79.8 | 322968 | 24.7 | 100.2 | 55.5 |
Zhejiang | 4289 | 55.4 | 197543 | 26.6 | 131.5 | 65.3 |
Fujian | 2598 | 38.4 | 119668 | 23.2 | 108.2 | 69.6 |
Shandong | 6300 | 98.5 | 290200 | 11.4 | 92.3 | 48.9 |
Guangdong | 7281 | 108.5 | 335387 | 25.9 | 133.5 | 72.4 |
Hainan | 370 | 9.1 | 17056 | 18.8 | 98.2 | 51.6 |
Whole region | 37185 | 495 | 75157 | 24.5 | 116.2 | 63.8 |
Central region | ||||||
Hebei | 2981 | 74.3 | 137292 | 13.2 | 82.6 | 50.5 |
Shanxi | 1277 | 36.6 | 58805 | 12.1 | 88.5 | 54.2 |
Jilin | 1406 | 27.5 | 64777 | 20.8 | 91.2 | 47.7 |
Heilongjiang | 1508 | 38.1 | 69478 | 15.6 | 87.4 | 44.5 |
Anhui | 2201 | 61.4 | 101362 | 12 | 68.2 | 39.4 |
Jiangxi | 1672 | 45.7 | 77033 | 12.5 | 66.4 | 38.7 |
Henan | 3700 | 94.8 | 170438 | 10.7 | 79.5 | 39.2 |
Hubei | 2955 | 58.5 | 136113 | 14.9 | 77.4 | 46.8 |
Hunan | 2890 | 67.8 | 133129 | 11.6 | 69.2 | 39.9 |
Whole region | 20590 | 505 | 40790 | 14 | 79 | 45 |
Western region | ||||||
Inner Mongolia | 1783 | 25.1 | 82135 | 12.9 | 94.7 | 50.3 |
Guangxi | 1680 | 48 | 77398 | 9.2 | 75 | 42.8 |
Chongqing | 1572 | 30.2 | 72396 | 18.6 | 90.8 | 48.3 |
Sichuan | 3005 | 82 | 138430 | 16.5 | 82.9 | 40 |
Guizhou | 1050 | 35.3 | 48377 | 8.9 | 83.3 | 38.4 |
Yunnan | 1362 | 47.4 | 62732 | 8 | 78.9 | 37.4 |
Tibet | 103 | 3.2 | 4728 | 10.8 | 82.9 | 44.6 |
Shanxi | 1277 | 36.6 | 58805 | 12.1 | 88.5 | 54.2 |
Gansu | 679 | 26 | 31277 | 12.5 | 81 | 38.8 |
Qinghai | 242 | 5.9 | 11133 | 17.7 | 87.9 | 54.5 |
Ningxia | 291 | 6.7 | 13412 | 12.6 | 95.3 | 49.3 |
Xinjiang | 932 | 23.6 | 42952 | 21.2 | 86 | 54.9 |
Whole region | 13976 | 370 | 37770 | 13.4 | 85.6 | 46.1 |
Whole country | 71751 | 1370 | 52389 | 17.1 | 93.5 | 51.4 |
Note: DMU = Decision-making unit, GRP = Gross regional product, Pr1 = Fixed-line penetration rate(per 100 persons), Pr2 = Mobile penetration rate(per 100 persons), Pr3 = Internet penetration rate(%). Source: China Statistical Yearbook 2016. |
Telecom revenue(million) | Labour (person) | Cap 1 | Cap 2 | Cap 3 | Cap 4 | |
2011 | ||||||
Mean | 37825 | 48776 | 390945 | 515413 | 14009 | 55366 |
Median | 30775 | 43488 | 378032 | 433175 | 12154 | 44740 |
S.D. | 30489 | 32707 | 254058 | 503184 | 10424 | 39246 |
Minimum | 2386 | 1090 | 50642 | 34540 | 1270 | 2300 |
Maximum | 161716 | 152384 | 1162101 | 2644348 | 47815 | 190767 |
2012 | ||||||
Mean | 41879 | 49125 | 477203 | 508122 | 14112 | 59363 |
Median | 34519 | 43579 | 441060 | 411477 | 11902 | 49244 |
S.D. | 33254 | 32550 | 325007 | 497595 | 9840 | 42026 |
Minimum | 3301 | 1090 | 63145 | 34540 | 1336 | 3420 |
Maximum | 176638 | 152293 | 1567817 | 2587636 | 43606 | 203926 |
2013 | ||||||
Mean | 50668 | 49600 | 563023 | 411595 | 13254 | 63406 |
Median | 42938 | 44245 | 505633 | 342237 | 10255 | 52558 |
S.D. | 40798 | 32412 | 372801 | 301962 | 9135 | 43518 |
Minimum | 3965 | 1308 | 74047 | 16620 | 1337 | 3930 |
Maximum | 217609 | 151377 | 1735687 | 1446394 | 40865 | 211481 |
2014 | ||||||
Mean | 58511 | 50493 | 664920 | 315595 | 13069 | 66137 |
Median | 52066 | 44681 | 584039 | 224364 | 8907 | 58580 |
S.D. | 47187 | 33387 | 463481 | 281664 | 13534 | 44984 |
Minimum | 4543 | 1635 | 88892 | 14310 | 536 | 3930 |
Maximum | 249354 | 155175 | 2081008 | 1337449 | 74018 | 214181 |
2015 | ||||||
Mean | 75311 | 50079 | 802043 | 268276 | 8530 | 70371 |
Median | 69949 | 44354 | 656959 | 207480 | 7204 | 58941 |
S.D. | 60863 | 32599 | 570614 | 209756 | 6017 | 47591 |
Minimum | 5379 | 1617 | 115695 | 12870 | 115 | 4480 |
Maximum | 315003 | 150432 | 2511543 | 851520 | 28447 | 220258 |
Note: Cap 1 = the length of optical cable lines (in kilometres); Cap 2 = the capacity of long-distance telephone exchanges(in circuits); Cap 3 = the capacity of local office telephone exchanges(in thousand exchange lines); Cap 4 = the capacity of mobile telephone exchanges(in thousand subscribers). |
Telecom revenue(million) | Labour (person) | Cap 1 | Cap 2 | Cap 3 | Cap 4 | |
2011 | ||||||
Mean | 37825 | 48776 | 390945 | 515413 | 14009 | 55366 |
Median | 30775 | 43488 | 378032 | 433175 | 12154 | 44740 |
S.D. | 30489 | 32707 | 254058 | 503184 | 10424 | 39246 |
Minimum | 2386 | 1090 | 50642 | 34540 | 1270 | 2300 |
Maximum | 161716 | 152384 | 1162101 | 2644348 | 47815 | 190767 |
2012 | ||||||
Mean | 41879 | 49125 | 477203 | 508122 | 14112 | 59363 |
Median | 34519 | 43579 | 441060 | 411477 | 11902 | 49244 |
S.D. | 33254 | 32550 | 325007 | 497595 | 9840 | 42026 |
Minimum | 3301 | 1090 | 63145 | 34540 | 1336 | 3420 |
Maximum | 176638 | 152293 | 1567817 | 2587636 | 43606 | 203926 |
2013 | ||||||
Mean | 50668 | 49600 | 563023 | 411595 | 13254 | 63406 |
Median | 42938 | 44245 | 505633 | 342237 | 10255 | 52558 |
S.D. | 40798 | 32412 | 372801 | 301962 | 9135 | 43518 |
Minimum | 3965 | 1308 | 74047 | 16620 | 1337 | 3930 |
Maximum | 217609 | 151377 | 1735687 | 1446394 | 40865 | 211481 |
2014 | ||||||
Mean | 58511 | 50493 | 664920 | 315595 | 13069 | 66137 |
Median | 52066 | 44681 | 584039 | 224364 | 8907 | 58580 |
S.D. | 47187 | 33387 | 463481 | 281664 | 13534 | 44984 |
Minimum | 4543 | 1635 | 88892 | 14310 | 536 | 3930 |
Maximum | 249354 | 155175 | 2081008 | 1337449 | 74018 | 214181 |
2015 | ||||||
Mean | 75311 | 50079 | 802043 | 268276 | 8530 | 70371 |
Median | 69949 | 44354 | 656959 | 207480 | 7204 | 58941 |
S.D. | 60863 | 32599 | 570614 | 209756 | 6017 | 47591 |
Minimum | 5379 | 1617 | 115695 | 12870 | 115 | 4480 |
Maximum | 315003 | 150432 | 2511543 | 851520 | 28447 | 220258 |
Note: Cap 1 = the length of optical cable lines (in kilometres); Cap 2 = the capacity of long-distance telephone exchanges(in circuits); Cap 3 = the capacity of local office telephone exchanges(in thousand exchange lines); Cap 4 = the capacity of mobile telephone exchanges(in thousand subscribers). |
DMU | Annual averages (2011-2015) | ||||
EffCh | TechCh | PEffCh | SEffCh | TFPCh | |
Eastern region | |||||
Beijing | 1.000 | 1.110 | 1.000 | 1.000 | 1.110 |
Tianjin | 0.919 | 1.158 | 0.986 | 0.932 | 1.064 |
Liaoning | 0.872 | 1.175 | 0.871 | 1.001 | 1.025 |
Shanghai | 0.998 | 1.137 | 0.999 | 0.999 | 1.134 |
Jiangsu | 1.003 | 1.246 | 1.000 | 1.003 | 1.250 |
Zhejian | 1.000 | 1.218 | 1.000 | 1.000 | 1.218 |
Fujian | 1.019 | 1.289 | 1.017 | 1.002 | 1.314 |
Shandong | 0.935 | 1.235 | 0.936 | 0.999 | 1.155 |
Guangdong | 1.000 | 1.209 | 1.000 | 1.000 | 1.209 |
Hainan | 1.016 | 1.309 | 1.000 | 1.016 | 1.330 |
Central region | |||||
Hebei | 0.921 | 1.221 | 0.924 | 0.996 | 1.124 |
Shanxi | 0.929 | 1.272 | 0.931 | 0.998 | 1.182 |
Jilin | 0.946 | 1.260 | 0.952 | 0.994 | 1.191 |
Heilongjiang | 0.888 | 1.177 | 0.899 | 0.988 | 1.045 |
Anhui | 1.040 | 1.360 | 1.068 | 0.974 | 1.415 |
Jiangxi | 0.993 | 1.234 | 0.992 | 1.001 | 1.225 |
Henan | 0.987 | 1.289 | 1.014 | 0.973 | 1.272 |
Hubei | 0.996 | 1.296 | 1.003 | 0.993 | 1.291 |
Hunan | 0.958 | 1.266 | 0.957 | 1.001 | 1.213 |
Western region | |||||
Inner Mongolia | 0.914 | 1.349 | 0.930 | 0.983 | 1.232 |
Guangxi | 0.972 | 1.137 | 0.969 | 1.003 | 1.105 |
Chongqing | 1.017 | 1.337 | 1.015 | 1.002 | 1.361 |
Sichuan | 0.963 | 1.371 | 1.000 | 0.963 | 1.320 |
Guizhou | 1.061 | 1.166 | 1.060 | 1.001 | 1.237 |
Yunnan | 1.009 | 1.274 | 1.009 | 1.001 | 1.285 |
Tibet | 1.000 | 1.351 | 1.000 | 1.000 | 1.351 |
Shanxi | 1.016 | 1.268 | 1.022 | 0.994 | 1.288 |
Gansu | 1.043 | 1.291 | 1.060 | 0.984 | 1.347 |
Qinghai | 1.043 | 1.439 | 1.000 | 1.043 | 1.501 |
Ningxia | 1.006 | 1.259 | 1.000 | 1.006 | 1.266 |
Xinjiang | 0.932 | 1.275 | 0.947 | 0.983 | 1.188 |
Eastern region | 0.975 | 1.207 | 0.980 | 0.995 | 1.177 |
Central region | 0.961 | 1.263 | 0.970 | 0.991 | 1.214 |
Western region | 0.997 | 1.291 | 1.000 | 0.997 | 1.287 |
All regions | 0.979 | 1.255 | 0.985 | 0.994 | 1.229 |
DMU | Annual averages (2011-2015) | ||||
EffCh | TechCh | PEffCh | SEffCh | TFPCh | |
Eastern region | |||||
Beijing | 1.000 | 1.110 | 1.000 | 1.000 | 1.110 |
Tianjin | 0.919 | 1.158 | 0.986 | 0.932 | 1.064 |
Liaoning | 0.872 | 1.175 | 0.871 | 1.001 | 1.025 |
Shanghai | 0.998 | 1.137 | 0.999 | 0.999 | 1.134 |
Jiangsu | 1.003 | 1.246 | 1.000 | 1.003 | 1.250 |
Zhejian | 1.000 | 1.218 | 1.000 | 1.000 | 1.218 |
Fujian | 1.019 | 1.289 | 1.017 | 1.002 | 1.314 |
Shandong | 0.935 | 1.235 | 0.936 | 0.999 | 1.155 |
Guangdong | 1.000 | 1.209 | 1.000 | 1.000 | 1.209 |
Hainan | 1.016 | 1.309 | 1.000 | 1.016 | 1.330 |
Central region | |||||
Hebei | 0.921 | 1.221 | 0.924 | 0.996 | 1.124 |
Shanxi | 0.929 | 1.272 | 0.931 | 0.998 | 1.182 |
Jilin | 0.946 | 1.260 | 0.952 | 0.994 | 1.191 |
Heilongjiang | 0.888 | 1.177 | 0.899 | 0.988 | 1.045 |
Anhui | 1.040 | 1.360 | 1.068 | 0.974 | 1.415 |
Jiangxi | 0.993 | 1.234 | 0.992 | 1.001 | 1.225 |
Henan | 0.987 | 1.289 | 1.014 | 0.973 | 1.272 |
Hubei | 0.996 | 1.296 | 1.003 | 0.993 | 1.291 |
Hunan | 0.958 | 1.266 | 0.957 | 1.001 | 1.213 |
Western region | |||||
Inner Mongolia | 0.914 | 1.349 | 0.930 | 0.983 | 1.232 |
Guangxi | 0.972 | 1.137 | 0.969 | 1.003 | 1.105 |
Chongqing | 1.017 | 1.337 | 1.015 | 1.002 | 1.361 |
Sichuan | 0.963 | 1.371 | 1.000 | 0.963 | 1.320 |
Guizhou | 1.061 | 1.166 | 1.060 | 1.001 | 1.237 |
Yunnan | 1.009 | 1.274 | 1.009 | 1.001 | 1.285 |
Tibet | 1.000 | 1.351 | 1.000 | 1.000 | 1.351 |
Shanxi | 1.016 | 1.268 | 1.022 | 0.994 | 1.288 |
Gansu | 1.043 | 1.291 | 1.060 | 0.984 | 1.347 |
Qinghai | 1.043 | 1.439 | 1.000 | 1.043 | 1.501 |
Ningxia | 1.006 | 1.259 | 1.000 | 1.006 | 1.266 |
Xinjiang | 0.932 | 1.275 | 0.947 | 0.983 | 1.188 |
Eastern region | 0.975 | 1.207 | 0.980 | 0.995 | 1.177 |
Central region | 0.961 | 1.263 | 0.970 | 0.991 | 1.214 |
Western region | 0.997 | 1.291 | 1.000 | 0.997 | 1.287 |
All regions | 0.979 | 1.255 | 0.985 | 0.994 | 1.229 |
Year | EffCh | TechCh | PEffCh | SEffCh | TFPCh |
2012 | 1.006 | 1.068 | 1.006 | 1.000 | 1.074 |
2013 | 0.916 | 1.293 | 0.934 | 0.981 | 1.185 |
2014 | 1.017 | 1.293 | 1.007 | 1.010 | 1.315 |
2015 | 0.982 | 1.390 | 0.993 | 0.988 | 1.364 |
Year | EffCh | TechCh | PEffCh | SEffCh | TFPCh |
2012 | 1.006 | 1.068 | 1.006 | 1.000 | 1.074 |
2013 | 0.916 | 1.293 | 0.934 | 0.981 | 1.185 |
2014 | 1.017 | 1.293 | 1.007 | 1.010 | 1.315 |
2015 | 0.982 | 1.390 | 0.993 | 0.988 | 1.364 |
EffCh | TechCh | PEffCh | SEffCh | TFPCh | |
2011-2013 | 0.960 | 1.175 | 0.970 | 0.990 | 1.128 |
2013-2015 | 0.999 | 1.340 | 1.000 | 0.999 | 1.339 |
EffCh | TechCh | PEffCh | SEffCh | TFPCh | |
2011-2013 | 0.960 | 1.175 | 0.970 | 0.990 | 1.128 |
2013-2015 | 0.999 | 1.340 | 1.000 | 0.999 | 1.339 |
[1] |
Pooja Bansal. Sequential Malmquist-Luenberger productivity index for interval data envelopment analysis. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022058 |
[2] |
Habibe Zare Haghighi, Sajad Adeli, Farhad Hosseinzadeh Lotfi, Gholam Reza Jahanshahloo. Revenue congestion: An application of data envelopment analysis. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1311-1322. doi: 10.3934/jimo.2016.12.1311 |
[3] |
Pooja Bansal, Aparna Mehra. Integrated dynamic interval data envelopment analysis in the presence of integer and negative data. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1339-1363. doi: 10.3934/jimo.2021023 |
[4] |
Mahdi Mahdiloo, Abdollah Noorizadeh, Reza Farzipoor Saen. Developing a new data envelopment analysis model for customer value analysis. Journal of Industrial and Management Optimization, 2011, 7 (3) : 531-558. doi: 10.3934/jimo.2011.7.531 |
[5] |
M. Núñez-López, J. X. Velasco-Hernández, P. A. Marquet. The dynamics of technological change under constraints: Adopters and resources. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3299-3317. doi: 10.3934/dcdsb.2014.19.3299 |
[6] |
Mohammad Afzalinejad, Zahra Abbasi. A slacks-based model for dynamic data envelopment analysis. Journal of Industrial and Management Optimization, 2019, 15 (1) : 275-291. doi: 10.3934/jimo.2018043 |
[7] |
Cheng-Kai Hu, Fung-Bao Liu, Cheng-Feng Hu. Efficiency measures in fuzzy data envelopment analysis with common weights. Journal of Industrial and Management Optimization, 2017, 13 (1) : 237-249. doi: 10.3934/jimo.2016014 |
[8] |
Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046 |
[9] |
Hasan Hosseini-Nasab, Vahid Ettehadi. Development of opened-network data envelopment analysis models under uncertainty. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022027 |
[10] |
Eugenio Aulisa, Lidia Bloshanskaya, Akif Ibragimov. Well productivity index for compressible fluids and gases. Evolution Equations and Control Theory, 2016, 5 (1) : 1-36. doi: 10.3934/eect.2016.5.1 |
[11] |
Saber Saati, Adel Hatami-Marbini, Per J. Agrell, Madjid Tavana. A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial and Management Optimization, 2012, 8 (3) : 623-637. doi: 10.3934/jimo.2012.8.623 |
[12] |
Ali Hadi, Saeid Mehrabian. A two-stage data envelopment analysis approach to solve extended transportation problem with non-homogenous costs. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022006 |
[13] |
Pikkala Vijaya Laxmi, Seleshi Demie. Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times. Journal of Industrial and Management Optimization, 2014, 10 (3) : 839-857. doi: 10.3934/jimo.2014.10.839 |
[14] |
Roberto Avanzi, Nicolas Thériault. A filtering method for the hyperelliptic curve index calculus and its analysis. Advances in Mathematics of Communications, 2010, 4 (2) : 189-213. doi: 10.3934/amc.2010.4.189 |
[15] |
Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of borehole seismic data. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022026 |
[16] |
Zari Dzalilov, Iradj Ouveysi, Tolga Bektaş. An extended lifetime measure for telecommunications networks: Improvements and implementations. Journal of Industrial and Management Optimization, 2012, 8 (3) : 639-649. doi: 10.3934/jimo.2012.8.639 |
[17] |
Fumio Ishizaki. Analysis of the statistical time-access fairness index of one-bit feedback fair scheduler. Numerical Algebra, Control and Optimization, 2011, 1 (4) : 675-689. doi: 10.3934/naco.2011.1.675 |
[18] |
Francisco Pedroche, Regino Criado, Esther García, Miguel Romance, Victoria E. Sánchez. Comparing series of rankings with ties by using complex networks: An analysis of the Spanish stock market (IBEX-35 index). Networks and Heterogeneous Media, 2015, 10 (1) : 101-125. doi: 10.3934/nhm.2015.10.101 |
[19] |
George Siopsis. Quantum topological data analysis with continuous variables. Foundations of Data Science, 2019, 1 (4) : 419-431. doi: 10.3934/fods.2019017 |
[20] |
Zhouchen Lin. A review on low-rank models in data analysis. Big Data & Information Analytics, 2016, 1 (2&3) : 139-161. doi: 10.3934/bdia.2016001 |
2020 Impact Factor: 2.425
Tools
Article outline
Figures and Tables
[Back to Top]