
-
Previous Article
An independent set degree condition for fractional critical deleted graphs
- DCDS-S Home
- This Issue
-
Next Article
A mathematical analysis for the forecast research on tourism carrying capacity to promote the effective and sustainable development of tourism
The perturbed photogravitational restricted three-body problem: Analysis of resonant periodic orbits
1. | Department of Mathematics, Dharmsinh Desai University, Nadiad, Gujarat 3870001, India |
2. | Department of Mathematics, The Maharaja Sayajirao University of Baroda, Vadodara, 390002 Gujarat, India |
3. | Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Mathematics Department, King Abdulaziz University, Jeddah, Saudi Arabia |
4. | Celestial Mechanics Unit, Astronomy Department, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan 11421, Cairo, Egypt |
In the framework of the perturbed photo-gravitational restricted three-body problem, the first order exterior resonant orbits and the first, third and fifth order interior resonant periodic orbits are analyzed. The location, eccentricity and period of the first order exterior and interior resonant orbits are investigated in the unperturbed and perturbed cases for a specified value of Jacobi constant C.
It is observed that as the number of loops increases successively from one loop to five loops, the period of infinitesimal body increases in such a way that the successive difference of periods is either 6 or 7 units. It is further observed that for the exterior resonance, as the number of loops increases, the location of the periodic orbit moves towards the Sun whereas for the interior resonance as the number of loops increases, location of the periodic orbit moves away from the Sun. Thereby we demonstrate that the location of resonant orbits of the given order moves away from the Sun when perturbation is included.
The evolution of interior first order resonant orbit with three loops is studied for different values of Jacobi constant C. It is observed that when the value of C increases, the size of the loop decreases and degenerates finally into a circle, the eccentricity of periodic orbit decreases and location of the periodic orbit moves towards the second primary body.
References:
[1] |
E. I. Abouelmagd, L. G. Guirao Juan and A. Mostafa,
Numerical integration of the restricted thee-body problem with Lie series, Astrophysics Space Science, 354 (2014), 369-378.
|
[2] |
E. I. Abouelmagd and M. A. Sharaf,
The motion around the libration points in the restricted three-body problem with the effect of radiation and oblateness, Astrophys. Space Sci., 344 (2013), 321-332.
|
[3] |
E. I. Abouelmagd, F. Alzahrani, J. L. G. Guiro and A. Hobiny,
Periodic orbits around the collinear libration points, J. Nonlinear Sci. Appl. (JNSA), 9 (2016), 1716-1727.
doi: 10.22436/jnsa.009.04.27. |
[4] |
E. I. Abouelmagd, M. S. Alhothuali, L. G. Guirao Juan and H. M. Malaikah,
Periodic and secular solutions in the restricted three ody problem under the effect of zonal harmonic parameters, Applied Mathematics & Information Science, 9 (2015), 1659-1669.
|
[5] |
E. I. Abouelmagd, J. L. G. Guirao, A. Hobiny and F. Alzahrani,
Stability of equilibria points for a dumbbell satellite when the central body is oblate spheroid, Discrete and Continuous Dynamical Systems - Series S (DCDS-S), 8 (2015), 1047-1054.
doi: 10.3934/dcdss.2015.8.1047. |
[6] |
E. I. Abouelmagd and J. L. G. Guirao,
On the perturbed restricted three-body problem, Applied Mathematics and Nonlinear Sciences, 1 (2016), 123-144.
|
[7] |
E. I. Abouelmagd, J. L. G. Guirao and J. A. Vera,
Dynamics of a dumbbell satellite under the zonal harmonic effect of an oblate body, Commun Nonlinear Sci Numer Simulat., 20 (2015), 1057-1069.
doi: 10.1016/j.cnsns.2014.06.033. |
[8] |
E. I. Abouelmagd, D. Mortari and H. H. Selim, Analytical study of periodic solutions on perturbed equatorial two-body problem,
International Journal of Bifurcation and Chaos, 25 (2015), 1540040, 14pp.
doi: 10.1142/S0218127415400404. |
[9] |
E. I. Abouelmagd,
Existence and stability of triangular points in the restricted three-body problem with numerical applications, Astrophys Space Sci., 342 (2012), 45-53.
|
[10] |
E. I. Abouelmagd,
Stability of the triangular points under combined effects of radiation and oblateness in the restricted three-body problem, Earth Moon Planets, 110 (2013), 143-155.
|
[11] |
E. I. Abouelmagd,
The effect of photogravitational force and oblateness in the perturbed restricted three-body problem, Astrophys Space Sci., 346 (2013), 51-69.
|
[12] |
E. I. Abouelmagd, M. S. Alhothuali, L. G. Guirao Juan and H. M. Malaikah,
The effect of zonal harmonic coefficients in the framework of the restricted three-body problem, Advances in Space Research, 55 (2015), 1660-1672.
|
[13] |
E. Balint, R. Renata, S. Zsolt and F. Emese,
Stability of higher order resonances in the restricted-three body problem, Celest. Mech. Dyn. Astron., 113 (2012), 95-112.
doi: 10.1007/s10569-012-9420-4. |
[14] |
F. Cachucho, P. M. Cincotta and S. Ferraz-Mello,
Chirikov diffusion in the asteroidal three-body resonance (5, -2, -2), Celest. Mech. Dyn. Astron., 108 (2010), 35-58.
doi: 10.1007/s10569-010-9290-6. |
[15] |
E. I. Chiang, J. Lovering, R. I. Millis, M. W. Buie, L. H. Wasserman and K. J. Meech,
Resonant and secular families of the Kuiper belt, Earth Moon Planets, 92 (2003), 49-62.
|
[16] |
C. Douskos, V. Kalantonis and P. Markellos, Effects of resonances on the stability of retrograde satellites, Astrophys. Space Sci., 310, 245-249. |
[17] |
R. Dvorak, A. Bazs and L.-Y. Zhou,
Where are the Uranus Trojans?, Celest. Mech. Dyn. Astron., 107 (2010), 51-62.
doi: 10.1007/s10569-010-9261-y. |
[18] |
V. V. Emel'yanenko and E. L. Kiseleva,
Resonant motion of trans-Neptunian objects in high-eccentricity orbits, Astron. Lett., 34 (2008), 271-279.
|
[19] |
J. Gayon, E. Bois and H. Scholl,
Dynamics of planets in retrograde mean motion resonance, Celest. Mech. Dyn. Astron., 103 (2009), 267-279.
doi: 10.1007/s10569-009-9191-8. |
[20] |
J. D. Hadjidemetriou, D. Psychoyos and G. Voyatzis,
The 1:1 resonance in extrasolar planetary systems, Celest. Mech. Dyn. Astron., 104 (2009), 23-38.
doi: 10.1007/s10569-009-9185-6. |
[21] |
J. D. Hadjidemetriou and G. Voyatzis,
On the dynamics of extrasolar planetary systems under dissipation: Migration of planets, Celest. Mech. Dyn. Astron., 107 (2010), 3-19.
doi: 10.1007/s10569-010-9260-z. |
[22] |
M. J. Holman and N. W. Murray,
Chaos in high-order mean motion resonances in the outer asteroid belt, Astron. J., 112 (1996), 1278-1293.
|
[23] |
A. S. Libert and K. Tsiganis,
Trapping in three-planet resonances during gas-driven migration, Celest. Mech. Dyn. Astron., 111 (2011), 201-218.
|
[24] |
E. Kolmen, N. J. Kasdin and P. Gurfil,
Quasi-periodic orbits of the restricted three body problem made easy, AIP Conference Proceedings, 886 (2007), 68-77.
|
[25] |
V. V. Markellos, K. E. Papadakis and E. A. Perdios,
Non-linear stability zones around triangular equilibria in the plane circular restricted three-body problem with oblateness, Astrophys Space Sci., 245 (1996), 157-164.
|
[26] |
F. Migliorini, P. Michel, A. Morbidelli, D. Nesvorn and V. Zappal,
Origin of multi kilometer Earth and Mars-crossing asteroids: A quantitative simulation, Science, 281 (1998), 2022-2024.
|
[27] |
A. Morbidelli, V. Zappala, M. Moons, A. Cellino and R. Gonczi,
Asteriod families close to mean motion resonances: Dynamical effects and physical implications, Icarus, 118 (1995), 137-154.
|
[28] |
C. D. Murray and S. F. Dermot, Solar System Dynamics, Cambridge University Press, 1999. |
[29] |
N. M. Pathak, R. K. Sharma and V. O. Thomas,
Evolution of periodic orbits in the Sun- Saturn system, International Journal of Astronomy and Astrophysics, 6 (2016), 175-197.
|
[30] |
N. M. Pathak and V. O. Thomas,
Evolution of the f Family Orbits in the Photo-Gravitational Sun-Saturn System with Oblateness, International Journal of Astronomy and Astrophysics, 6 (2016), 254-271.
|
[31] |
N. M. Pathak and V. O. Thomas,
Analysis of effect of oblateness of smaller primary on the evolution of periodic orbits, International Journal of Astronomy and Astrophysics, 6 (2016), 440-463.
|
[32] |
N. M. Pathak and V. O. Thomas,
Analysis of effect of solar radiation pressure of bigger primary on the evolution of periodic orbits, International Journal of Astronomy and Astrophysics, 6 (2016), 464-493.
|
[33] |
E. A. Perdios and V. S. Kalantonis,
Self-resonant bifurcations of the Sitnikov family and the appearance of 3D isolas in the restricted three-body problem, Celest. Mech. Dyn. Astron., 113 (2012), 377-386.
doi: 10.1007/s10569-012-9424-0. |
[34] |
H. Poincaré, Les Méthodes Nouvelles de la Méchanique, Celeste. Gauthier- Villas, Paris., 1987. |
[35] |
N. Pushparaj and R. K. Sharma,
Interior resonance periodic orbits in photogravitational restricted three-body problem, Advances in Astrophysics, 2 (2017), 263-272.
|
[36] |
A. E. Roy and M. W. Ovenden,
On the occurrence of commensurable mean motions in the solar system, Monthly Notices of the Royal Astronomical Society, 114 (1954), 232-241.
|
[37] |
R. K. Sharma and P. V. Subbarao,
A case of commensurability induced by oblateness, Celest. Mech., 18 (1978), 185-194.
|
[38] |
R. K. Sharma,
The linear stability of libration points of the photo gravitational restricted three body problem when the smaller primary is an oblate spheroid, Astrophysics and Space Science, 135 (1987), 271-281.
|
[39] |
P. P. Stor, J. Kla cka and L. K. mar,
Motion of dust in mean motion resonance with planets, Celest. Mech. Dyn. Astron., 103 (2009), 343-364.
doi: 10.1007/s10569-009-9202-9. |
[40] |
E. W. Thommes,
A safety net for fast migrators: Interactions between gap-opening and sub ap-opening bodies in a protoplanetary disk, Astrophys. J., 626 (2005), 1033-1044.
|
show all references
References:
[1] |
E. I. Abouelmagd, L. G. Guirao Juan and A. Mostafa,
Numerical integration of the restricted thee-body problem with Lie series, Astrophysics Space Science, 354 (2014), 369-378.
|
[2] |
E. I. Abouelmagd and M. A. Sharaf,
The motion around the libration points in the restricted three-body problem with the effect of radiation and oblateness, Astrophys. Space Sci., 344 (2013), 321-332.
|
[3] |
E. I. Abouelmagd, F. Alzahrani, J. L. G. Guiro and A. Hobiny,
Periodic orbits around the collinear libration points, J. Nonlinear Sci. Appl. (JNSA), 9 (2016), 1716-1727.
doi: 10.22436/jnsa.009.04.27. |
[4] |
E. I. Abouelmagd, M. S. Alhothuali, L. G. Guirao Juan and H. M. Malaikah,
Periodic and secular solutions in the restricted three ody problem under the effect of zonal harmonic parameters, Applied Mathematics & Information Science, 9 (2015), 1659-1669.
|
[5] |
E. I. Abouelmagd, J. L. G. Guirao, A. Hobiny and F. Alzahrani,
Stability of equilibria points for a dumbbell satellite when the central body is oblate spheroid, Discrete and Continuous Dynamical Systems - Series S (DCDS-S), 8 (2015), 1047-1054.
doi: 10.3934/dcdss.2015.8.1047. |
[6] |
E. I. Abouelmagd and J. L. G. Guirao,
On the perturbed restricted three-body problem, Applied Mathematics and Nonlinear Sciences, 1 (2016), 123-144.
|
[7] |
E. I. Abouelmagd, J. L. G. Guirao and J. A. Vera,
Dynamics of a dumbbell satellite under the zonal harmonic effect of an oblate body, Commun Nonlinear Sci Numer Simulat., 20 (2015), 1057-1069.
doi: 10.1016/j.cnsns.2014.06.033. |
[8] |
E. I. Abouelmagd, D. Mortari and H. H. Selim, Analytical study of periodic solutions on perturbed equatorial two-body problem,
International Journal of Bifurcation and Chaos, 25 (2015), 1540040, 14pp.
doi: 10.1142/S0218127415400404. |
[9] |
E. I. Abouelmagd,
Existence and stability of triangular points in the restricted three-body problem with numerical applications, Astrophys Space Sci., 342 (2012), 45-53.
|
[10] |
E. I. Abouelmagd,
Stability of the triangular points under combined effects of radiation and oblateness in the restricted three-body problem, Earth Moon Planets, 110 (2013), 143-155.
|
[11] |
E. I. Abouelmagd,
The effect of photogravitational force and oblateness in the perturbed restricted three-body problem, Astrophys Space Sci., 346 (2013), 51-69.
|
[12] |
E. I. Abouelmagd, M. S. Alhothuali, L. G. Guirao Juan and H. M. Malaikah,
The effect of zonal harmonic coefficients in the framework of the restricted three-body problem, Advances in Space Research, 55 (2015), 1660-1672.
|
[13] |
E. Balint, R. Renata, S. Zsolt and F. Emese,
Stability of higher order resonances in the restricted-three body problem, Celest. Mech. Dyn. Astron., 113 (2012), 95-112.
doi: 10.1007/s10569-012-9420-4. |
[14] |
F. Cachucho, P. M. Cincotta and S. Ferraz-Mello,
Chirikov diffusion in the asteroidal three-body resonance (5, -2, -2), Celest. Mech. Dyn. Astron., 108 (2010), 35-58.
doi: 10.1007/s10569-010-9290-6. |
[15] |
E. I. Chiang, J. Lovering, R. I. Millis, M. W. Buie, L. H. Wasserman and K. J. Meech,
Resonant and secular families of the Kuiper belt, Earth Moon Planets, 92 (2003), 49-62.
|
[16] |
C. Douskos, V. Kalantonis and P. Markellos, Effects of resonances on the stability of retrograde satellites, Astrophys. Space Sci., 310, 245-249. |
[17] |
R. Dvorak, A. Bazs and L.-Y. Zhou,
Where are the Uranus Trojans?, Celest. Mech. Dyn. Astron., 107 (2010), 51-62.
doi: 10.1007/s10569-010-9261-y. |
[18] |
V. V. Emel'yanenko and E. L. Kiseleva,
Resonant motion of trans-Neptunian objects in high-eccentricity orbits, Astron. Lett., 34 (2008), 271-279.
|
[19] |
J. Gayon, E. Bois and H. Scholl,
Dynamics of planets in retrograde mean motion resonance, Celest. Mech. Dyn. Astron., 103 (2009), 267-279.
doi: 10.1007/s10569-009-9191-8. |
[20] |
J. D. Hadjidemetriou, D. Psychoyos and G. Voyatzis,
The 1:1 resonance in extrasolar planetary systems, Celest. Mech. Dyn. Astron., 104 (2009), 23-38.
doi: 10.1007/s10569-009-9185-6. |
[21] |
J. D. Hadjidemetriou and G. Voyatzis,
On the dynamics of extrasolar planetary systems under dissipation: Migration of planets, Celest. Mech. Dyn. Astron., 107 (2010), 3-19.
doi: 10.1007/s10569-010-9260-z. |
[22] |
M. J. Holman and N. W. Murray,
Chaos in high-order mean motion resonances in the outer asteroid belt, Astron. J., 112 (1996), 1278-1293.
|
[23] |
A. S. Libert and K. Tsiganis,
Trapping in three-planet resonances during gas-driven migration, Celest. Mech. Dyn. Astron., 111 (2011), 201-218.
|
[24] |
E. Kolmen, N. J. Kasdin and P. Gurfil,
Quasi-periodic orbits of the restricted three body problem made easy, AIP Conference Proceedings, 886 (2007), 68-77.
|
[25] |
V. V. Markellos, K. E. Papadakis and E. A. Perdios,
Non-linear stability zones around triangular equilibria in the plane circular restricted three-body problem with oblateness, Astrophys Space Sci., 245 (1996), 157-164.
|
[26] |
F. Migliorini, P. Michel, A. Morbidelli, D. Nesvorn and V. Zappal,
Origin of multi kilometer Earth and Mars-crossing asteroids: A quantitative simulation, Science, 281 (1998), 2022-2024.
|
[27] |
A. Morbidelli, V. Zappala, M. Moons, A. Cellino and R. Gonczi,
Asteriod families close to mean motion resonances: Dynamical effects and physical implications, Icarus, 118 (1995), 137-154.
|
[28] |
C. D. Murray and S. F. Dermot, Solar System Dynamics, Cambridge University Press, 1999. |
[29] |
N. M. Pathak, R. K. Sharma and V. O. Thomas,
Evolution of periodic orbits in the Sun- Saturn system, International Journal of Astronomy and Astrophysics, 6 (2016), 175-197.
|
[30] |
N. M. Pathak and V. O. Thomas,
Evolution of the f Family Orbits in the Photo-Gravitational Sun-Saturn System with Oblateness, International Journal of Astronomy and Astrophysics, 6 (2016), 254-271.
|
[31] |
N. M. Pathak and V. O. Thomas,
Analysis of effect of oblateness of smaller primary on the evolution of periodic orbits, International Journal of Astronomy and Astrophysics, 6 (2016), 440-463.
|
[32] |
N. M. Pathak and V. O. Thomas,
Analysis of effect of solar radiation pressure of bigger primary on the evolution of periodic orbits, International Journal of Astronomy and Astrophysics, 6 (2016), 464-493.
|
[33] |
E. A. Perdios and V. S. Kalantonis,
Self-resonant bifurcations of the Sitnikov family and the appearance of 3D isolas in the restricted three-body problem, Celest. Mech. Dyn. Astron., 113 (2012), 377-386.
doi: 10.1007/s10569-012-9424-0. |
[34] |
H. Poincaré, Les Méthodes Nouvelles de la Méchanique, Celeste. Gauthier- Villas, Paris., 1987. |
[35] |
N. Pushparaj and R. K. Sharma,
Interior resonance periodic orbits in photogravitational restricted three-body problem, Advances in Astrophysics, 2 (2017), 263-272.
|
[36] |
A. E. Roy and M. W. Ovenden,
On the occurrence of commensurable mean motions in the solar system, Monthly Notices of the Royal Astronomical Society, 114 (1954), 232-241.
|
[37] |
R. K. Sharma and P. V. Subbarao,
A case of commensurability induced by oblateness, Celest. Mech., 18 (1978), 185-194.
|
[38] |
R. K. Sharma,
The linear stability of libration points of the photo gravitational restricted three body problem when the smaller primary is an oblate spheroid, Astrophysics and Space Science, 135 (1987), 271-281.
|
[39] |
P. P. Stor, J. Kla cka and L. K. mar,
Motion of dust in mean motion resonance with planets, Celest. Mech. Dyn. Astron., 103 (2009), 343-364.
doi: 10.1007/s10569-009-9202-9. |
[40] |
E. W. Thommes,
A safety net for fast migrators: Interactions between gap-opening and sub ap-opening bodies in a protoplanetary disk, Astrophys. J., 626 (2005), 1033-1044.
|

























Ⅰ | 1 | 0 | 1 | 0.93904 | 1 | 1:2 | 0.40895 | 13 | 0.49936 |
2 | 0.88740 | 2:3 | 0.32301 | 19 | 0.66633 | ||||
3 | 0.85623 | 3:4 | 0.29337 | 26 | 0.74943 | ||||
4 | 0.83547 | 4:5 | 0.28015 | 32 | 0.79977 | ||||
5 | 0.82075 | 5:6 | 0.27331 | 38 | 0.83313 | ||||
Ⅱ | 1 | 0.0001 | 1 | 0.93877 | 1 | 1:2 | 0.40904 | 13 | 0.49945 |
2 | 0.88710 | 2:3 | 0.32319 | 19 | 0.66641 | ||||
3 | 0.85592 | 3:4 | 0.29358 | 26 | 0.74979 | ||||
4 | 0.83516 | 4:5 | 0.28039 | 32 | 0.79982 | ||||
5 | 0.82044 | 5:6 | 0.27355 | 38 | 0.83318 | ||||
Ⅲ | 0.9845 | 0 | 1 | 0.97895 | 1 | 1:2 | 0.36044 | 13 | 0.52805 |
2 | 0.93800 | 2:3 | 0.26118 | 19 | 0.69904 | ||||
3 | 0.91210 | 3:4 | 0.22428 | 26 | 0.78432 | ||||
4 | 0.89403 | 4:5 | 0.20685 | 32 | 0.83562 | ||||
5 | 0.88075 | 5:6 | 0.19740 | 38 | 0.86990 | ||||
Ⅳ | 0.9845 | 0.0001 | 1 | 0.97870 | 1 | 1:2 | 0.36081 | 13 | 0.52779 |
2 | 0.93764 | 2:3 | 0.26136 | 19 | 0.69919 | ||||
3 | 0.91172 | 3:4 | 0.22453 | 26 | 0.78443 | ||||
4 | 0.89363 | 4:5 | 0.20713 | 32 | 0.83574 | ||||
5 | 0.88035 | 5:6 | 0.19771 | 38 | 0.86999 |
Ⅰ | 1 | 0 | 1 | 0.93904 | 1 | 1:2 | 0.40895 | 13 | 0.49936 |
2 | 0.88740 | 2:3 | 0.32301 | 19 | 0.66633 | ||||
3 | 0.85623 | 3:4 | 0.29337 | 26 | 0.74943 | ||||
4 | 0.83547 | 4:5 | 0.28015 | 32 | 0.79977 | ||||
5 | 0.82075 | 5:6 | 0.27331 | 38 | 0.83313 | ||||
Ⅱ | 1 | 0.0001 | 1 | 0.93877 | 1 | 1:2 | 0.40904 | 13 | 0.49945 |
2 | 0.88710 | 2:3 | 0.32319 | 19 | 0.66641 | ||||
3 | 0.85592 | 3:4 | 0.29358 | 26 | 0.74979 | ||||
4 | 0.83516 | 4:5 | 0.28039 | 32 | 0.79982 | ||||
5 | 0.82044 | 5:6 | 0.27355 | 38 | 0.83318 | ||||
Ⅲ | 0.9845 | 0 | 1 | 0.97895 | 1 | 1:2 | 0.36044 | 13 | 0.52805 |
2 | 0.93800 | 2:3 | 0.26118 | 19 | 0.69904 | ||||
3 | 0.91210 | 3:4 | 0.22428 | 26 | 0.78432 | ||||
4 | 0.89403 | 4:5 | 0.20685 | 32 | 0.83562 | ||||
5 | 0.88075 | 5:6 | 0.19740 | 38 | 0.86990 | ||||
Ⅳ | 0.9845 | 0.0001 | 1 | 0.97870 | 1 | 1:2 | 0.36081 | 13 | 0.52779 |
2 | 0.93764 | 2:3 | 0.26136 | 19 | 0.69919 | ||||
3 | 0.91172 | 3:4 | 0.22453 | 26 | 0.78443 | ||||
4 | 0.89363 | 4:5 | 0.20713 | 32 | 0.83574 | ||||
5 | 0.88035 | 5:6 | 0.19771 | 38 | 0.86999 |
Ⅰ | 1 | 0 | 1 | 0.939000 | 1 | 1:2 | 0.40852 | 13 | 0.50015 |
2 | 0.887370 | 2:3 | 0.32284 | 19 | 0.66692 | ||||
3 | 0.856190 | 3:4 | 0.29324 | 26 | 0.75031 | ||||
4 | 0.835433 | 4:5 | 0.28006 | 32 | 0.80033 | ||||
5 | 0.820715 | 5:6 | 0.27323 | 38 | 0.83368 | ||||
Ⅱ | 1 | 0.0001 | 1 | 0.93875 | 1 | 1:2 | 0.40866 | 13 | 0.50017 |
2 | 0.88708 | 2:3 | 0.32302 | 19 | 0.66697 | ||||
3 | 0.85588 | 3:4 | 0.29346 | 26 | 0.75037 | ||||
4 | 0.83512 | 4:5 | 0.28029 | 32 | 0.80039 | ||||
5 | 0.82040 | 5:6 | 0.27347 | 38 | 0.83374 | ||||
Ⅲ | 0.9845 | 0 | 1 | 0.97891 | 1 | 1:2 | 0.35887 | 13 | 0.53027 |
2 | 0.93795 | 2:3 | 0.26069 | 19 | 0.70019 | ||||
3 | 0.91204 | 3:4 | 0.22397 | 26 | 0.78521 | ||||
4 | 0.89397 | 4:5 | 0.20662 | 32 | 0.83643 | ||||
5 | 0.88069 | 5:6 | 0.19722 | 38 | 0.87067 | ||||
Ⅳ | 0.9845 | 0.0001 | 1 | 0.97861 | 1 | 1:2 | 0.35895 | 13 | 0.53041 |
2 | 0.93761 | 2:3 | 0.26090 | 19 | 0.70018 | ||||
3 | 0.91167 | 3:4 | 0.22423 | 26 | 0.78529 | ||||
4 | 0.89358 | 4:5 | 0.20691 | 32 | 0.83652 | ||||
5 | 0.88029 | 5:6 | 0.19752 | 38 | 0.87076 |
Ⅰ | 1 | 0 | 1 | 0.939000 | 1 | 1:2 | 0.40852 | 13 | 0.50015 |
2 | 0.887370 | 2:3 | 0.32284 | 19 | 0.66692 | ||||
3 | 0.856190 | 3:4 | 0.29324 | 26 | 0.75031 | ||||
4 | 0.835433 | 4:5 | 0.28006 | 32 | 0.80033 | ||||
5 | 0.820715 | 5:6 | 0.27323 | 38 | 0.83368 | ||||
Ⅱ | 1 | 0.0001 | 1 | 0.93875 | 1 | 1:2 | 0.40866 | 13 | 0.50017 |
2 | 0.88708 | 2:3 | 0.32302 | 19 | 0.66697 | ||||
3 | 0.85588 | 3:4 | 0.29346 | 26 | 0.75037 | ||||
4 | 0.83512 | 4:5 | 0.28029 | 32 | 0.80039 | ||||
5 | 0.82040 | 5:6 | 0.27347 | 38 | 0.83374 | ||||
Ⅲ | 0.9845 | 0 | 1 | 0.97891 | 1 | 1:2 | 0.35887 | 13 | 0.53027 |
2 | 0.93795 | 2:3 | 0.26069 | 19 | 0.70019 | ||||
3 | 0.91204 | 3:4 | 0.22397 | 26 | 0.78521 | ||||
4 | 0.89397 | 4:5 | 0.20662 | 32 | 0.83643 | ||||
5 | 0.88069 | 5:6 | 0.19722 | 38 | 0.87067 | ||||
Ⅳ | 0.9845 | 0.0001 | 1 | 0.97861 | 1 | 1:2 | 0.35895 | 13 | 0.53041 |
2 | 0.93761 | 2:3 | 0.26090 | 19 | 0.70018 | ||||
3 | 0.91167 | 3:4 | 0.22423 | 26 | 0.78529 | ||||
4 | 0.89358 | 4:5 | 0.20691 | 32 | 0.83652 | ||||
5 | 0.88029 | 5:6 | 0.19752 | 38 | 0.87076 |
Ⅰ | 1 | 0 | 2 | 0.29385 | 1 | 2:1 | 0.53353 | 07 | 2.00000 |
3 | 0.47692 | 3:2 | 0.37506 | 13 | 1.50000 | ||||
4 | 0.55735 | 4:3 | 0.32483 | 19 | 1.33330 | ||||
5 | 0.60105 | 5:4 | 0.30258 | 26 | 1.24991 | ||||
6 | 0.62815 | 6:5 | 0.29074 | 32 | 1.19981 | ||||
7 | 0.64650 | 7:6 | 0.28366 | 38 | 1.16633 | ||||
8 | 0.66000 | 8:7 | 0.27897 | 44 | 1.14185 | ||||
Ⅱ | 1 | 0.0001 | 2 | 0.29375 | 1 | 2:1 | 0.53367 | 07 | 2.00015 |
3 | 0.47675 | 3:2 | 0.37525 | 13 | 1.50009 | ||||
4 | 0.55713 | 4:3 | 0.32506 | 19 | 1.33339 | ||||
5 | 0.60080 | 5:4 | 0.30283 | 26 | 1.25001 | ||||
6 | 0.62788 | 6:5 | 0.29100 | 32 | 1.19992 | ||||
7 | 0.64627 | 7:6 | 0.28391 | 38 | 1.16635 | ||||
8 | 0.65980 | 8:7 | 0.27921 | 44 | 1.14180 | ||||
Ⅲ | 0.9845 | 0 | 2 | 0.31234 | 1 | 2:1 | 0.47832 | 07 | 2.15851 |
3 | 0.50990 | 3:2 | 0.30776 | 13 | 1.58182 | ||||
4 | 0.59888 | 4:3 | 0.25104 | 19 | 1.39854 | ||||
5 | 0.64770 | 5:4 | 0.22523 | 26 | 1.30827 | ||||
6 | 0.67801 | 6:5 | 0.21135 | 32 | 1.25452 | ||||
7 | 0.69851 | 7:6 | 0.20301 | 38 | 1.21879 | ||||
8 | 0.71327 | 8:7 | 0.19758 | 44 | 1.19323 | ||||
Ⅳ | 0.9845 | 0.0001 | 2 | 0.31222 | 1 | 2:1 | 0.47848 | 07 | 2.15875 |
3 | 0.50970 | 3:2 | 0.30799 | 13 | 1.58195 | ||||
4 | 0.59861 | 4:3 | 0.25133 | 19 | 1.39869 | ||||
5 | 0.64740 | 5:4 | 0.22554 | 26 | 1.30839 | ||||
6 | 0.67768 | 6:5 | 0.21168 | 32 | 1.25465 | ||||
7 | 0.69819 | 7:6 | 0.20333 | 38 | 1.21887 | ||||
8 | 0.71290 | 8:7 | 0.19793 | 44 | 1.19338 |
Ⅰ | 1 | 0 | 2 | 0.29385 | 1 | 2:1 | 0.53353 | 07 | 2.00000 |
3 | 0.47692 | 3:2 | 0.37506 | 13 | 1.50000 | ||||
4 | 0.55735 | 4:3 | 0.32483 | 19 | 1.33330 | ||||
5 | 0.60105 | 5:4 | 0.30258 | 26 | 1.24991 | ||||
6 | 0.62815 | 6:5 | 0.29074 | 32 | 1.19981 | ||||
7 | 0.64650 | 7:6 | 0.28366 | 38 | 1.16633 | ||||
8 | 0.66000 | 8:7 | 0.27897 | 44 | 1.14185 | ||||
Ⅱ | 1 | 0.0001 | 2 | 0.29375 | 1 | 2:1 | 0.53367 | 07 | 2.00015 |
3 | 0.47675 | 3:2 | 0.37525 | 13 | 1.50009 | ||||
4 | 0.55713 | 4:3 | 0.32506 | 19 | 1.33339 | ||||
5 | 0.60080 | 5:4 | 0.30283 | 26 | 1.25001 | ||||
6 | 0.62788 | 6:5 | 0.29100 | 32 | 1.19992 | ||||
7 | 0.64627 | 7:6 | 0.28391 | 38 | 1.16635 | ||||
8 | 0.65980 | 8:7 | 0.27921 | 44 | 1.14180 | ||||
Ⅲ | 0.9845 | 0 | 2 | 0.31234 | 1 | 2:1 | 0.47832 | 07 | 2.15851 |
3 | 0.50990 | 3:2 | 0.30776 | 13 | 1.58182 | ||||
4 | 0.59888 | 4:3 | 0.25104 | 19 | 1.39854 | ||||
5 | 0.64770 | 5:4 | 0.22523 | 26 | 1.30827 | ||||
6 | 0.67801 | 6:5 | 0.21135 | 32 | 1.25452 | ||||
7 | 0.69851 | 7:6 | 0.20301 | 38 | 1.21879 | ||||
8 | 0.71327 | 8:7 | 0.19758 | 44 | 1.19323 | ||||
Ⅳ | 0.9845 | 0.0001 | 2 | 0.31222 | 1 | 2:1 | 0.47848 | 07 | 2.15875 |
3 | 0.50970 | 3:2 | 0.30799 | 13 | 1.58195 | ||||
4 | 0.59861 | 4:3 | 0.25133 | 19 | 1.39869 | ||||
5 | 0.64740 | 5:4 | 0.22554 | 26 | 1.30839 | ||||
6 | 0.67768 | 6:5 | 0.21168 | 32 | 1.25465 | ||||
7 | 0.69819 | 7:6 | 0.20333 | 38 | 1.21887 | ||||
8 | 0.71290 | 8:7 | 0.19793 | 44 | 1.19338 |
Ⅰ | 1 | 0 | 2 | 0.29386 | 1 | 2:1 | 0.53352 | 07 | 2.00090 |
3 | 0.47693 | 3:2 | 0.37504 | 13 | 1.50067 | ||||
4 | 0.55734 | 4:3 | 0.32482 | 19 | 1.33393 | ||||
5 | 0.60102 | 5:4 | 0.30258 | 26 | 1.25055 | ||||
6 | 0.62808 | 6:5 | 0.29075 | 32 | 1.20005 | ||||
7 | 0.64637 | 7:6 | 0.28369 | 38 | 1.16792 | ||||
8 | 0.65954 | 8:7 | 0.27911 | 44 | 1.14323 | ||||
Ⅱ | 1 | 0.0001 | 2 | 0.293750 | 1 | 2:1 | 0.533670 | 07 | 2.00105 |
3 | 0.476745 | 3:2 | 0.375250 | 13 | 1.50079 | ||||
4 | 0.557125 | 4:3 | 0.325050 | 19 | 1.33402 | ||||
5 | 0.600770 | 5:4 | 0.302830 | 26 | 1.25065 | ||||
6 | 0.627830 | 6:5 | 0.291011 | 32 | 1.20058 | ||||
7 | 0.646100 | 7:6 | 0.283950 | 38 | 1.16722 | ||||
8 | 0.659270 | 8:7 | 0.279370 | 44 | 1.14331 | ||||
Ⅲ | 0.9845 | 0 | 2 | 0.31235 | 1 | 2:1 | 0.47831 | 07 | 2.15947 |
3 | 0.50991 | 3:2 | 0.30774 | 13 | 1.58251 | ||||
4 | 0.59887 | 4:3 | 0.25103 | 19 | 1.39922 | ||||
5 | 0.64768 | 5:4 | 0.22522 | 26 | 1.30892 | ||||
6 | 0.67797 | 6:5 | 0.21134 | 32 | 1.25519 | ||||
7 | 0.69843 | 7:6 | 0.20301 | 38 | 1.21952 | ||||
8 | 0.71309 | 8:7 | 0.19761 | 44 | 1.19412 | ||||
Ⅳ | 0.9845 | 0.0001 | 2 | 0.31223 | 1 | 2:1 | 0.478470 | 07 | 2.15970 |
3 | 0.50971 | 3:2 | 0.307980 | 13 | 1.58266 | ||||
4 | 0.59860 | 4:3 | 0.251320 | 19 | 1.39936 | ||||
5 | 0.64738 | 5:4 | 0.225530 | 26 | 1.30905 | ||||
6 | 0.67764 | 6:5 | 0.211567 | 32 | 1.25532 | ||||
7 | 0.69809 | 7:6 | 0.203340 | 38 | 1.21963 | ||||
8 | 0.71273 | 8:7 | 0.197960 | 44 | 1.19426 |
Ⅰ | 1 | 0 | 2 | 0.29386 | 1 | 2:1 | 0.53352 | 07 | 2.00090 |
3 | 0.47693 | 3:2 | 0.37504 | 13 | 1.50067 | ||||
4 | 0.55734 | 4:3 | 0.32482 | 19 | 1.33393 | ||||
5 | 0.60102 | 5:4 | 0.30258 | 26 | 1.25055 | ||||
6 | 0.62808 | 6:5 | 0.29075 | 32 | 1.20005 | ||||
7 | 0.64637 | 7:6 | 0.28369 | 38 | 1.16792 | ||||
8 | 0.65954 | 8:7 | 0.27911 | 44 | 1.14323 | ||||
Ⅱ | 1 | 0.0001 | 2 | 0.293750 | 1 | 2:1 | 0.533670 | 07 | 2.00105 |
3 | 0.476745 | 3:2 | 0.375250 | 13 | 1.50079 | ||||
4 | 0.557125 | 4:3 | 0.325050 | 19 | 1.33402 | ||||
5 | 0.600770 | 5:4 | 0.302830 | 26 | 1.25065 | ||||
6 | 0.627830 | 6:5 | 0.291011 | 32 | 1.20058 | ||||
7 | 0.646100 | 7:6 | 0.283950 | 38 | 1.16722 | ||||
8 | 0.659270 | 8:7 | 0.279370 | 44 | 1.14331 | ||||
Ⅲ | 0.9845 | 0 | 2 | 0.31235 | 1 | 2:1 | 0.47831 | 07 | 2.15947 |
3 | 0.50991 | 3:2 | 0.30774 | 13 | 1.58251 | ||||
4 | 0.59887 | 4:3 | 0.25103 | 19 | 1.39922 | ||||
5 | 0.64768 | 5:4 | 0.22522 | 26 | 1.30892 | ||||
6 | 0.67797 | 6:5 | 0.21134 | 32 | 1.25519 | ||||
7 | 0.69843 | 7:6 | 0.20301 | 38 | 1.21952 | ||||
8 | 0.71309 | 8:7 | 0.19761 | 44 | 1.19412 | ||||
Ⅳ | 0.9845 | 0.0001 | 2 | 0.31223 | 1 | 2:1 | 0.478470 | 07 | 2.15970 |
3 | 0.50971 | 3:2 | 0.307980 | 13 | 1.58266 | ||||
4 | 0.59860 | 4:3 | 0.251320 | 19 | 1.39936 | ||||
5 | 0.64738 | 5:4 | 0.225530 | 26 | 1.30905 | ||||
6 | 0.67764 | 6:5 | 0.211567 | 32 | 1.25532 | ||||
7 | 0.69809 | 7:6 | 0.203340 | 38 | 1.21963 | ||||
8 | 0.71273 | 8:7 | 0.197960 | 44 | 1.19426 |
2.93 | 0.50970 | 1 | 3:2 | 0.30799 | 13 | 1.58195 |
2.95 | 0.53653 | 0.27320 | 1.57665 | |||
2.97 | 0.56750 | 0.23304 | 1.57112 | |||
2.99 | 0.60501 | 0.18439 | 1.56524 | |||
3.01 | 0.65610 | 0.11817 | 1.55825 | |||
3.02 | 0.69590 | 0.06656 | 1.55357 | |||
3.03 | 0.75300 | 0.01658 | 1.56821 |
2.93 | 0.50970 | 1 | 3:2 | 0.30799 | 13 | 1.58195 |
2.95 | 0.53653 | 0.27320 | 1.57665 | |||
2.97 | 0.56750 | 0.23304 | 1.57112 | |||
2.99 | 0.60501 | 0.18439 | 1.56524 | |||
3.01 | 0.65610 | 0.11817 | 1.55825 | |||
3.02 | 0.69590 | 0.06656 | 1.55357 | |||
3.03 | 0.75300 | 0.01658 | 1.56821 |
2.93 | 0.50971 | 1 | 3:2 | 0.30798 | 13 | 1.58266 |
2.97 | 0.56750 | 0.23303 | 1.57184 | |||
3.01 | 0.65608 | 0.11815 | 1.55901 | |||
3.02 | 0.69590 | 0.06651 | 1.55431 | |||
3.03 | 0.75200 | 0.01514 | 1.56908 |
2.93 | 0.50971 | 1 | 3:2 | 0.30798 | 13 | 1.58266 |
2.97 | 0.56750 | 0.23303 | 1.57184 | |||
3.01 | 0.65608 | 0.11815 | 1.55901 | |||
3.02 | 0.69590 | 0.06651 | 1.55431 | |||
3.03 | 0.75200 | 0.01514 | 1.56908 |
2.93 | 0.39923 | 3 | 7:4 | 0.39522 | 26 | 1.86449 |
2.96 | 0.42824 | 0.35353 | 1.85476 | |||
2.98 | 0.44991 | 0.32238 | 1.84836 |
2.93 | 0.39923 | 3 | 7:4 | 0.39522 | 26 | 1.86449 |
2.96 | 0.42824 | 0.35353 | 1.85476 | |||
2.98 | 0.44991 | 0.32238 | 1.84836 |
2.93 | 0.39923 | 3 | 7:4 | 0.39521 | 26 | 1.86534 |
2.96 | 0.42823 | 0.35353 | 1.85564 | |||
2.98 | 0.44991 | 0.32232 | 1.84921 |
2.93 | 0.39923 | 3 | 7:4 | 0.39521 | 26 | 1.86534 |
2.96 | 0.42823 | 0.35353 | 1.85564 | |||
2.98 | 0.44991 | 0.32232 | 1.84921 |
Ⅰ | 7 | 0.39923 | 3 | 7:4 | 0.39522 | 26 | 1.86449 |
8 | 0.46231 | 8:5 | 0.34307 | 32 | 1.69384 | ||
10 | 0.54635 | 10:7 | 0.28318 | 44 | 1.50281 | ||
11 | 0.57515 | 11:8 | 0.26511 | 51 | 1.44432 | ||
13 | 0.61796 | 13:10 | 0.24063 | 63 | 1.36221 | ||
14 | 0.63358 | 14:11 | 0.23244 | 70 | 1.33343 | ||
Ⅱ | 7 | 0.56160 | 3 | 7:4 | 0.27346 | 32 | 1.47147 |
9 | 0.62620 | 9:6 | 0.23625 | 44 | 1.34696 | ||
11 | 0.66415 | 11:8 | 0.21766 | 57 | 1.27850 | ||
13 | 0.68886 | 13:10 | 0.20702 | 70 | 1.23510 |
Ⅰ | 7 | 0.39923 | 3 | 7:4 | 0.39522 | 26 | 1.86449 |
8 | 0.46231 | 8:5 | 0.34307 | 32 | 1.69384 | ||
10 | 0.54635 | 10:7 | 0.28318 | 44 | 1.50281 | ||
11 | 0.57515 | 11:8 | 0.26511 | 51 | 1.44432 | ||
13 | 0.61796 | 13:10 | 0.24063 | 63 | 1.36221 | ||
14 | 0.63358 | 14:11 | 0.23244 | 70 | 1.33343 | ||
Ⅱ | 7 | 0.56160 | 3 | 7:4 | 0.27346 | 32 | 1.47147 |
9 | 0.62620 | 9:6 | 0.23625 | 44 | 1.34696 | ||
11 | 0.66415 | 11:8 | 0.21766 | 57 | 1.27850 | ||
13 | 0.68886 | 13:10 | 0.20702 | 70 | 1.23510 |
Ⅰ | 7 | 0.39923 | 3 | 7:4 | 0.39521 | 26 | 1.86534 |
8 | 0.46235 | 8:5 | 0.34303 | 32 | 1.69452 | ||
10 | 0.54630 | 10:7 | 0.28320 | 44 | 1.50361 | ||
11 | 0.57521 | 11:8 | 0.26506 | 51 | 1.44487 | ||
13 | 0.61783 | 13:10 | 0.24068 | 63 | 1.36310 | ||
14 | 0.63380 | 14:11 | 0.23231 | 70 | 1.33366 | ||
Ⅱ | 7 | 0.56158 | 3 | 7:4 | 0.27346 | 32 | 1.47220 |
9 | 0.62616 | 9:6 | 0.23626 | 44 | 1.34767 | ||
11 | 0.66413 | 11:8 | 0.21764 | 57 | 1.2794 | ||
13 | 0.68878 | 13:10 | 0.20702 | 70 | 1.23584 |
Ⅰ | 7 | 0.39923 | 3 | 7:4 | 0.39521 | 26 | 1.86534 |
8 | 0.46235 | 8:5 | 0.34303 | 32 | 1.69452 | ||
10 | 0.54630 | 10:7 | 0.28320 | 44 | 1.50361 | ||
11 | 0.57521 | 11:8 | 0.26506 | 51 | 1.44487 | ||
13 | 0.61783 | 13:10 | 0.24068 | 63 | 1.36310 | ||
14 | 0.63380 | 14:11 | 0.23231 | 70 | 1.33366 | ||
Ⅱ | 7 | 0.56158 | 3 | 7:4 | 0.27346 | 32 | 1.47220 |
9 | 0.62616 | 9:6 | 0.23626 | 44 | 1.34767 | ||
11 | 0.66413 | 11:8 | 0.21764 | 57 | 1.2794 | ||
13 | 0.68878 | 13:10 | 0.20702 | 70 | 1.23584 |
Ⅰ | 11 | 0.36792 | 5 | 11:6 | 0.42357 | 38 | 1.96103 |
12 | 0.41350 | 12:7 | 0.38286 | 44 | 1.82332 | ||
13 | 0.45107 | 13:8 | 0.35190 | 51 | 1.72225 | ||
14 | 0.48277 | 14:9 | 0.32751 | 57 | 1.64406 | ||
16 | 0.53281 | 16:11 | 0.29211 | 70 | 1.53139 | ||
17 | 0.55295 | 17:12 | 0.27893 | 76 | 1.48915 | ||
Ⅱ | 15 | 0.58150 | 5 | 15:10 | 0.26122 | 70 | 1.43180 |
17 | 0.61344 | 17:12 | 0.24307 | 82 | 1.37065 | ||
19 | 0.63733 | 19:14 | 0.23053 | 95 | 1.32660 | ||
21 | 0.65640 | 21:16 | 0.22124 | 107 | 1.29228 | ||
23 | 0.67095 | 23:18 | 0.21460 | 120 | 1.26649 |
Ⅰ | 11 | 0.36792 | 5 | 11:6 | 0.42357 | 38 | 1.96103 |
12 | 0.41350 | 12:7 | 0.38286 | 44 | 1.82332 | ||
13 | 0.45107 | 13:8 | 0.35190 | 51 | 1.72225 | ||
14 | 0.48277 | 14:9 | 0.32751 | 57 | 1.64406 | ||
16 | 0.53281 | 16:11 | 0.29211 | 70 | 1.53139 | ||
17 | 0.55295 | 17:12 | 0.27893 | 76 | 1.48915 | ||
Ⅱ | 15 | 0.58150 | 5 | 15:10 | 0.26122 | 70 | 1.43180 |
17 | 0.61344 | 17:12 | 0.24307 | 82 | 1.37065 | ||
19 | 0.63733 | 19:14 | 0.23053 | 95 | 1.32660 | ||
21 | 0.65640 | 21:16 | 0.22124 | 107 | 1.29228 | ||
23 | 0.67095 | 23:18 | 0.21460 | 120 | 1.26649 |
Ⅰ | 11 | 0.36790 | 5 | 11:6 | 0.42359 | 38 | 1.96199 |
12 | 0.41345 | 12:7 | 0.38289 | 44 | 1.82430 | ||
13 | 0.45118 | 13:8 | 0.35180 | 51 | 1.72276 | ||
14 | 0.48285 | 14:9 | 0.32744 | 57 | 1.64463 | ||
16 | 0.53273 | 16:11 | 0.29216 | 70 | 1.53227 | ||
17 | 0.55264 | 17:12 | 0.27912 | 76 | 1.49047 | ||
Ⅱ | 15 | 0.58152 | 5 | 15:10 | 0.26127 | 70 | 1.43243 |
17 | 0.61335 | 17:12 | 0.24310 | 82 | 1.37146 | ||
19 | 0.63740 | 19:14 | 0.23048 | 95 | 1.32710 | ||
21 | 0.65623 | 21:16 | 0.22130 | 107 | 1.29319 | ||
23 | 0.67119 | 23:18 | 0.21447 | 120 | 1.26667 |
Ⅰ | 11 | 0.36790 | 5 | 11:6 | 0.42359 | 38 | 1.96199 |
12 | 0.41345 | 12:7 | 0.38289 | 44 | 1.82430 | ||
13 | 0.45118 | 13:8 | 0.35180 | 51 | 1.72276 | ||
14 | 0.48285 | 14:9 | 0.32744 | 57 | 1.64463 | ||
16 | 0.53273 | 16:11 | 0.29216 | 70 | 1.53227 | ||
17 | 0.55264 | 17:12 | 0.27912 | 76 | 1.49047 | ||
Ⅱ | 15 | 0.58152 | 5 | 15:10 | 0.26127 | 70 | 1.43243 |
17 | 0.61335 | 17:12 | 0.24310 | 82 | 1.37146 | ||
19 | 0.63740 | 19:14 | 0.23048 | 95 | 1.32710 | ||
21 | 0.65623 | 21:16 | 0.22130 | 107 | 1.29319 | ||
23 | 0.67119 | 23:18 | 0.21447 | 120 | 1.26667 |
[1] |
Jungsoo Kang. Some remarks on symmetric periodic orbits in the restricted three-body problem. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5229-5245. doi: 10.3934/dcds.2014.34.5229 |
[2] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[3] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[4] |
Abimael Bengochea, Manuel Falconi, Ernesto Pérez-Chavela. Horseshoe periodic orbits with one symmetry in the general planar three-body problem. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 987-1008. doi: 10.3934/dcds.2013.33.987 |
[5] |
Richard Moeckel. A topological existence proof for the Schubart orbits in the collinear three-body problem. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 609-620. doi: 10.3934/dcdsb.2008.10.609 |
[6] |
Marcel Guardia, Tere M. Seara, Pau Martín, Lara Sabbagh. Oscillatory orbits in the restricted elliptic planar three body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 229-256. doi: 10.3934/dcds.2017009 |
[7] |
Gianni Arioli. Branches of periodic orbits for the planar restricted 3-body problem. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 745-755. doi: 10.3934/dcds.2004.11.745 |
[8] |
Elbaz I. Abouelmagd, Juan Luis García Guirao, Jaume Llibre. Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1007-1020. doi: 10.3934/dcdsb.2019003 |
[9] |
Hadia H. Selim, Juan L. G. Guirao, Elbaz I. Abouelmagd. Libration points in the restricted three-body problem: Euler angles, existence and stability. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 703-710. doi: 10.3934/dcdss.2019044 |
[10] |
Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074 |
[11] |
Jean-Baptiste Caillau, Bilel Daoud, Joseph Gergaud. Discrete and differential homotopy in circular restricted three-body control. Conference Publications, 2011, 2011 (Special) : 229-239. doi: 10.3934/proc.2011.2011.229 |
[12] |
Frederic Gabern, Àngel Jorba, Philippe Robutel. On the accuracy of restricted three-body models for the Trojan motion. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 843-854. doi: 10.3934/dcds.2004.11.843 |
[13] |
Tiancheng Ouyang, Duokui Yan. Variational properties and linear stabilities of spatial isosceles orbits in the equal-mass three-body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3989-4018. doi: 10.3934/dcds.2017169 |
[14] |
Edward Belbruno. Random walk in the three-body problem and applications. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519 |
[15] |
Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523 |
[16] |
Daniel Offin, Hildeberto Cabral. Hyperbolicity for symmetric periodic orbits in the isosceles three body problem. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 379-392. doi: 10.3934/dcdss.2009.2.379 |
[17] |
Mitsuru Shibayama. Non-integrability of the collinear three-body problem. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 299-312. doi: 10.3934/dcds.2011.30.299 |
[18] |
Richard Moeckel. A proof of Saari's conjecture for the three-body problem in $\R^d$. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 631-646. doi: 10.3934/dcdss.2008.1.631 |
[19] |
Hiroshi Ozaki, Hiroshi Fukuda, Toshiaki Fujiwara. Determination of motion from orbit in the three-body problem. Conference Publications, 2011, 2011 (Special) : 1158-1166. doi: 10.3934/proc.2011.2011.1158 |
[20] |
Kuo-Chang Chen. On Chenciner-Montgomery's orbit in the three-body problem. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 85-90. doi: 10.3934/dcds.2001.7.85 |
2020 Impact Factor: 2.425
Tools
Article outline
Figures and Tables
[Back to Top]