|
E. I. Abouelmagd
, L. G. Guirao Juan
and A. Mostafa
, Numerical integration of the restricted thee-body problem with Lie series, Astrophysics Space Science, 354 (2014)
, 369-378.
|
|
E. I. Abouelmagd
and M. A. Sharaf
, The motion around the libration points in the restricted three-body problem with the effect of radiation and oblateness, Astrophys. Space Sci., 344 (2013)
, 321-332.
|
|
E. I. Abouelmagd
, F. Alzahrani
, J. L. G. Guiro
and A. Hobiny
, Periodic orbits around the collinear libration points, J. Nonlinear Sci. Appl. (JNSA), 9 (2016)
, 1716-1727.
doi: 10.22436/jnsa.009.04.27.
|
|
E. I. Abouelmagd
, M. S. Alhothuali
, L. G. Guirao Juan
and H. M. Malaikah
, Periodic and secular solutions in the restricted three ody problem under the effect of zonal harmonic parameters, Applied Mathematics & Information Science, 9 (2015)
, 1659-1669.
|
|
E. I. Abouelmagd
, J. L. G. Guirao
, A. Hobiny
and F. Alzahrani
, Stability of equilibria points for a dumbbell satellite when the central body is oblate spheroid, Discrete and Continuous Dynamical Systems - Series S (DCDS-S), 8 (2015)
, 1047-1054.
doi: 10.3934/dcdss.2015.8.1047.
|
|
E. I. Abouelmagd
and J. L. G. Guirao
, On the perturbed restricted three-body problem, Applied Mathematics and Nonlinear Sciences, 1 (2016)
, 123-144.
|
|
E. I. Abouelmagd
, J. L. G. Guirao
and J. A. Vera
, Dynamics of a dumbbell satellite under the zonal harmonic effect of an oblate body, Commun Nonlinear Sci Numer Simulat., 20 (2015)
, 1057-1069.
doi: 10.1016/j.cnsns.2014.06.033.
|
|
E. I. Abouelmagd, D. Mortari and H. H. Selim, Analytical study of periodic solutions on perturbed equatorial two-body problem,
International Journal of Bifurcation and Chaos, 25 (2015), 1540040, 14pp.
doi: 10.1142/S0218127415400404.
|
|
E. I. Abouelmagd
, Existence and stability of triangular points in the restricted three-body problem with numerical applications, Astrophys Space Sci., 342 (2012)
, 45-53.
|
|
E. I. Abouelmagd
, Stability of the triangular points under combined effects of radiation and oblateness in the restricted three-body problem, Earth Moon Planets, 110 (2013)
, 143-155.
|
|
E. I. Abouelmagd
, The effect of photogravitational force and oblateness in the perturbed restricted three-body problem, Astrophys Space Sci., 346 (2013)
, 51-69.
|
|
E. I. Abouelmagd
, M. S. Alhothuali
, L. G. Guirao Juan
and H. M. Malaikah
, The effect of zonal harmonic coefficients in the framework of the restricted three-body problem, Advances in Space Research, 55 (2015)
, 1660-1672.
|
|
E. Balint
, R. Renata
, S. Zsolt
and F. Emese
, Stability of higher order resonances in the restricted-three body problem, Celest. Mech. Dyn. Astron., 113 (2012)
, 95-112.
doi: 10.1007/s10569-012-9420-4.
|
|
F. Cachucho
, P. M. Cincotta
and S. Ferraz-Mello
, Chirikov diffusion in the asteroidal three-body resonance (5, -2, -2), Celest. Mech. Dyn. Astron., 108 (2010)
, 35-58.
doi: 10.1007/s10569-010-9290-6.
|
|
E. I. Chiang
, J. Lovering
, R. I. Millis
, M. W. Buie
, L. H. Wasserman
and K. J. Meech
, Resonant and secular families of the Kuiper belt, Earth Moon Planets, 92 (2003)
, 49-62.
|
|
C. Douskos, V. Kalantonis and P. Markellos, Effects of resonances on the stability of retrograde satellites, Astrophys. Space Sci., 310, 245-249.
|
|
R. Dvorak
, A. Bazs
and L.-Y. Zhou
, Where are the Uranus Trojans?, Celest. Mech. Dyn. Astron., 107 (2010)
, 51-62.
doi: 10.1007/s10569-010-9261-y.
|
|
V. V. Emel'yanenko
and E. L. Kiseleva
, Resonant motion of trans-Neptunian objects in high-eccentricity orbits, Astron. Lett., 34 (2008)
, 271-279.
|
|
J. Gayon
, E. Bois
and H. Scholl
, Dynamics of planets in retrograde mean motion resonance, Celest. Mech. Dyn. Astron., 103 (2009)
, 267-279.
doi: 10.1007/s10569-009-9191-8.
|
|
J. D. Hadjidemetriou
, D. Psychoyos
and G. Voyatzis
, The 1:1 resonance in extrasolar planetary systems, Celest. Mech. Dyn. Astron., 104 (2009)
, 23-38.
doi: 10.1007/s10569-009-9185-6.
|
|
J. D. Hadjidemetriou
and G. Voyatzis
, On the dynamics of extrasolar planetary systems under dissipation: Migration of planets, Celest. Mech. Dyn. Astron., 107 (2010)
, 3-19.
doi: 10.1007/s10569-010-9260-z.
|
|
M. J. Holman
and N. W. Murray
, Chaos in high-order mean motion resonances in the outer asteroid belt, Astron. J., 112 (1996)
, 1278-1293.
|
|
A. S. Libert
and K. Tsiganis
, Trapping in three-planet resonances during gas-driven migration, Celest. Mech. Dyn. Astron., 111 (2011)
, 201-218.
|
|
E. Kolmen
, N. J. Kasdin
and P. Gurfil
, Quasi-periodic orbits of the restricted three body problem made easy, AIP Conference Proceedings, 886 (2007)
, 68-77.
|
|
V. V. Markellos
, K. E. Papadakis
and E. A. Perdios
, Non-linear stability zones around triangular equilibria in the plane circular restricted three-body problem with oblateness, Astrophys Space Sci., 245 (1996)
, 157-164.
|
|
F. Migliorini
, P. Michel
, A. Morbidelli
, D. Nesvorn
and V. Zappal
, Origin of multi kilometer Earth and Mars-crossing asteroids: A quantitative simulation, Science, 281 (1998)
, 2022-2024.
|
|
A. Morbidelli
, V. Zappala
, M. Moons
, A. Cellino
and R. Gonczi
, Asteriod families close to mean motion resonances: Dynamical effects and physical implications, Icarus, 118 (1995)
, 137-154.
|
|
C. D. Murray and S. F. Dermot, Solar System Dynamics, Cambridge University Press, 1999.
|
|
N. M. Pathak
, R. K. Sharma
and V. O. Thomas
, Evolution of periodic orbits in the Sun- Saturn system, International Journal of Astronomy and Astrophysics, 6 (2016)
, 175-197.
|
|
N. M. Pathak
and V. O. Thomas
, Evolution of the f Family Orbits in the Photo-Gravitational Sun-Saturn System with Oblateness, International Journal of Astronomy and Astrophysics, 6 (2016)
, 254-271.
|
|
N. M. Pathak
and V. O. Thomas
, Analysis of effect of oblateness of smaller primary on the evolution of periodic orbits, International Journal of Astronomy and Astrophysics, 6 (2016)
, 440-463.
|
|
N. M. Pathak
and V. O. Thomas
, Analysis of effect of solar radiation pressure of bigger primary on the evolution of periodic orbits, International Journal of Astronomy and Astrophysics, 6 (2016)
, 464-493.
|
|
E. A. Perdios
and V. S. Kalantonis
, Self-resonant bifurcations of the Sitnikov family and the appearance of 3D isolas in the restricted three-body problem, Celest. Mech. Dyn. Astron., 113 (2012)
, 377-386.
doi: 10.1007/s10569-012-9424-0.
|
|
H. Poincaré, Les Méthodes Nouvelles de la Méchanique, Celeste. Gauthier- Villas, Paris., 1987.
|
|
N. Pushparaj
and R. K. Sharma
, Interior resonance periodic orbits in photogravitational restricted three-body problem, Advances in Astrophysics, 2 (2017)
, 263-272.
|
|
A. E. Roy
and M. W. Ovenden
, On the occurrence of commensurable mean motions in the solar system, Monthly Notices of the Royal Astronomical Society, 114 (1954)
, 232-241.
|
|
R. K. Sharma
and P. V. Subbarao
, A case of commensurability induced by oblateness, Celest. Mech., 18 (1978)
, 185-194.
|
|
R. K. Sharma
, The linear stability of libration points of the photo gravitational restricted three body problem when the smaller primary is an oblate spheroid, Astrophysics and Space Science, 135 (1987)
, 271-281.
|
|
P. P. Stor
, J. Kla cka
and L. K. mar
, Motion of dust in mean motion resonance with planets, Celest. Mech. Dyn. Astron., 103 (2009)
, 343-364.
doi: 10.1007/s10569-009-9202-9.
|
|
E. W. Thommes
, A safety net for fast migrators: Interactions between gap-opening and sub ap-opening bodies in a protoplanetary disk, Astrophys. J., 626 (2005)
, 1033-1044.
|