• Previous Article
    Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm
  • DCDS-S Home
  • This Issue
  • Next Article
    The perturbed photogravitational restricted three-body problem: Analysis of resonant periodic orbits
August & September  2019, 12(4&5): 877-886. doi: 10.3934/dcdss.2019058

An independent set degree condition for fractional critical deleted graphs

1. 

School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China

2. 

Departamento de Matemática Aplicaday Estadística, Universidad Politécnica de Cartagena, Hospital de Marina, 30203-Cartagena, Región de Murcia, Spain

3. 

Center for Photonics and Smart Materials (CPSM), Zewail City of Science and Technology, Egypt

4. 

Mathematics Department, Faculty of Sciences, Sohag University, Egypt

5. 

Communication and Networks Engineering, Gulf University, Kingdom of Bahrain

6. 

College of Tourism and Geographic Sciences, Yunnan Normal University, Kunming 650500, China

* Corresponding author: Wei Gao(gaowei@ynnu.edu.cn)

Received  November 2017 Revised  January 2018 Published  November 2018

Let $i≥2$, $Δ≥0$, $1≤ a≤ b-Δ$, $n>\frac{(a+b)(ib+2m-2)}{a}+n'$ and $δ(G)≥\frac{b^{2}}{a}+n'+2m$, and let $g,f$ be two integer-valued functions defined on $V(G)$ such that $a≤ g(x)≤ f(x)-Δ≤ b-Δ$ for each $x∈ V(G)$. In this article, it is determined that $G$ is a fractional $(g,f,n',m)$-critical deleted graph if $\max\{d_{1},d_{2},···,d_{i}\}≥\frac{b(n+n')}{a+b}$ for any independent subset $\{x_{1},x_{2},..., x_{i}\}\subseteq V(G)$. The result is tight on independent set degree condition.

Citation: Wei Gao, Juan Luis García Guirao, Mahmoud Abdel-Aty, Wenfei Xi. An independent set degree condition for fractional critical deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 877-886. doi: 10.3934/dcdss.2019058
References:
[1]

J. A. Bondy and U. S. R. Mutry, Graph Theory, Springer, Berlin, 2008. doi: 10.1007/978-1-84628-970-5.  Google Scholar

[2]

W. Gao, Some Results on Fractional Deleted Graphs, Doctoral disdertation of Soochow university, 2012. Google Scholar

[3]

W. Gao and Y. Gao, Toughness condition for a graph to be a fractional (g, f, n)-critical deleted graph, The Scientific World Jo., 2014 (2014), Article ID 369798, 7 pages, http://dx.doi.org/10.1155/2014/369798. Google Scholar

[4]

W. GaoL. LiangT. W. Xu and J. X. Zhou, Tight toughness condition for fractional (g, f, n)-critical graphs, J. Korean Math. Soc., 51 (2014), 55-65.  doi: 10.4134/JKMS.2014.51.1.055.  Google Scholar

[5]

W. GaoL. LiangT. W. Xu and J. X. Zhou, Degree conditions for fractional (g, f, n', m)-critical deleted graphs and fractional ID-(g, f, m)-deleted graphs, Bull. Malays. Math. Sci. Soc., 39 (2016), 315-330.  doi: 10.1007/s40840-015-0194-1.  Google Scholar

[6]

W. Gao and M. R. Farahani, Degree-based indices computation for special chemical molecular structures using edge dividing method, Appl. Math. Nonl. Sc., 1 (2016), 94-117.   Google Scholar

[7]

W. Gao and W. F. Wang, Degree conditions for fractional (k, m)-deleted graphs, Ars. Combin., 113A (2014), 273-285.   Google Scholar

[8]

W. Gao and W. F. Wang, Toughness and fractional critical deleted graph, Utilitas Math., 98 (2015), 295-310.   Google Scholar

[9]

W. Gao and W. F. Wang, A tight neighborhood union condition on fractional (g, f, n, m)-critical deleted graphs, Colloq. Math., 149 (2017), 291-298.  doi: 10.4064/cm6959-8-2016.  Google Scholar

[10]

W. Gao and W. F. Wang, New isolated toughness condition for fractional (g, f, n)-critical graphs, Colloq. Math., 147 (2017), 55-65.  doi: 10.4064/cm6713-8-2016.  Google Scholar

[11]

W. Gao and C. C. Yan, A note on fractional (k, n', m)-critical deleted graph, Advances in Computational Mathematics and its Applications, 1 (2012), 53-55.   Google Scholar

[12]

S. Z. Zhou, A minimum degree condition of fractional (k, m)-deleted graphs, Comptes Rendus Math., 347 (2009), 1223-1226.  doi: 10.1016/j.crma.2009.09.022.  Google Scholar

[13]

S. Z. Zhou, A neighborhood condition for graphs to be fractional (k, m)- deleted graphs, Glasg. Math. J., 52 (2010), 33-40.  doi: 10.1017/S0017089509990139.  Google Scholar

[14]

S. Z. Zhou, A sufficient condition for a graph to be a fractional (f, n)-critical graph, Glasgow Math. J., 52 (2010), 409-415.  doi: 10.1017/S001708951000011X.  Google Scholar

[15]

S. Z. Zhou and H. Liu, On fractional (k, m)-deleted graphs with constrains conditions, Int. J. Comput. Math. Sci., 5 (2011), 130-132.   Google Scholar

[16]

S. Z. Zhou, A sufficient condition for graphs to be fractional (k, m)-deleted graphs, Appl. Math. Lett., 24 (2011), 1533-1538.  doi: 10.1016/j.aml.2011.03.041.  Google Scholar

[17]

S. Z. Zhou and Q. X. Bian, An existence theorem on fractional deleted graphs, Period. Math. Hung., 71 (2015), 125-133.  doi: 10.1007/s10998-015-0089-9.  Google Scholar

show all references

References:
[1]

J. A. Bondy and U. S. R. Mutry, Graph Theory, Springer, Berlin, 2008. doi: 10.1007/978-1-84628-970-5.  Google Scholar

[2]

W. Gao, Some Results on Fractional Deleted Graphs, Doctoral disdertation of Soochow university, 2012. Google Scholar

[3]

W. Gao and Y. Gao, Toughness condition for a graph to be a fractional (g, f, n)-critical deleted graph, The Scientific World Jo., 2014 (2014), Article ID 369798, 7 pages, http://dx.doi.org/10.1155/2014/369798. Google Scholar

[4]

W. GaoL. LiangT. W. Xu and J. X. Zhou, Tight toughness condition for fractional (g, f, n)-critical graphs, J. Korean Math. Soc., 51 (2014), 55-65.  doi: 10.4134/JKMS.2014.51.1.055.  Google Scholar

[5]

W. GaoL. LiangT. W. Xu and J. X. Zhou, Degree conditions for fractional (g, f, n', m)-critical deleted graphs and fractional ID-(g, f, m)-deleted graphs, Bull. Malays. Math. Sci. Soc., 39 (2016), 315-330.  doi: 10.1007/s40840-015-0194-1.  Google Scholar

[6]

W. Gao and M. R. Farahani, Degree-based indices computation for special chemical molecular structures using edge dividing method, Appl. Math. Nonl. Sc., 1 (2016), 94-117.   Google Scholar

[7]

W. Gao and W. F. Wang, Degree conditions for fractional (k, m)-deleted graphs, Ars. Combin., 113A (2014), 273-285.   Google Scholar

[8]

W. Gao and W. F. Wang, Toughness and fractional critical deleted graph, Utilitas Math., 98 (2015), 295-310.   Google Scholar

[9]

W. Gao and W. F. Wang, A tight neighborhood union condition on fractional (g, f, n, m)-critical deleted graphs, Colloq. Math., 149 (2017), 291-298.  doi: 10.4064/cm6959-8-2016.  Google Scholar

[10]

W. Gao and W. F. Wang, New isolated toughness condition for fractional (g, f, n)-critical graphs, Colloq. Math., 147 (2017), 55-65.  doi: 10.4064/cm6713-8-2016.  Google Scholar

[11]

W. Gao and C. C. Yan, A note on fractional (k, n', m)-critical deleted graph, Advances in Computational Mathematics and its Applications, 1 (2012), 53-55.   Google Scholar

[12]

S. Z. Zhou, A minimum degree condition of fractional (k, m)-deleted graphs, Comptes Rendus Math., 347 (2009), 1223-1226.  doi: 10.1016/j.crma.2009.09.022.  Google Scholar

[13]

S. Z. Zhou, A neighborhood condition for graphs to be fractional (k, m)- deleted graphs, Glasg. Math. J., 52 (2010), 33-40.  doi: 10.1017/S0017089509990139.  Google Scholar

[14]

S. Z. Zhou, A sufficient condition for a graph to be a fractional (f, n)-critical graph, Glasgow Math. J., 52 (2010), 409-415.  doi: 10.1017/S001708951000011X.  Google Scholar

[15]

S. Z. Zhou and H. Liu, On fractional (k, m)-deleted graphs with constrains conditions, Int. J. Comput. Math. Sci., 5 (2011), 130-132.   Google Scholar

[16]

S. Z. Zhou, A sufficient condition for graphs to be fractional (k, m)-deleted graphs, Appl. Math. Lett., 24 (2011), 1533-1538.  doi: 10.1016/j.aml.2011.03.041.  Google Scholar

[17]

S. Z. Zhou and Q. X. Bian, An existence theorem on fractional deleted graphs, Period. Math. Hung., 71 (2015), 125-133.  doi: 10.1007/s10998-015-0089-9.  Google Scholar

[1]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[2]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[3]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[4]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295

[5]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[6]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[7]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[8]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[9]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[10]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[11]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[12]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[13]

Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029

[14]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[15]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020394

[16]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[17]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[18]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[19]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[20]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (244)
  • HTML views (576)
  • Cited by (102)

[Back to Top]