-
Previous Article
Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm
- DCDS-S Home
- This Issue
-
Next Article
The perturbed photogravitational restricted three-body problem: Analysis of resonant periodic orbits
An independent set degree condition for fractional critical deleted graphs
1. | School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China |
2. | Departamento de Matemática Aplicaday Estadística, Universidad Politécnica de Cartagena, Hospital de Marina, 30203-Cartagena, Región de Murcia, Spain |
3. | Center for Photonics and Smart Materials (CPSM), Zewail City of Science and Technology, Egypt |
4. | Mathematics Department, Faculty of Sciences, Sohag University, Egypt |
5. | Communication and Networks Engineering, Gulf University, Kingdom of Bahrain |
6. | College of Tourism and Geographic Sciences, Yunnan Normal University, Kunming 650500, China |
Let $i≥2$, $Δ≥0$, $1≤ a≤ b-Δ$, $n>\frac{(a+b)(ib+2m-2)}{a}+n'$ and $δ(G)≥\frac{b^{2}}{a}+n'+2m$, and let $g,f$ be two integer-valued functions defined on $V(G)$ such that $a≤ g(x)≤ f(x)-Δ≤ b-Δ$ for each $x∈ V(G)$. In this article, it is determined that $G$ is a fractional $(g,f,n',m)$-critical deleted graph if $\max\{d_{1},d_{2},···,d_{i}\}≥\frac{b(n+n')}{a+b}$ for any independent subset $\{x_{1},x_{2},..., x_{i}\}\subseteq V(G)$. The result is tight on independent set degree condition.
References:
[1] |
J. A. Bondy and U. S. R. Mutry,
Graph Theory, Springer, Berlin, 2008.
doi: 10.1007/978-1-84628-970-5. |
[2] |
W. Gao,
Some Results on Fractional Deleted Graphs, Doctoral disdertation of Soochow university, 2012. |
[3] |
W. Gao and Y. Gao, Toughness condition for a graph to be a fractional (g, f, n)-critical deleted graph, The Scientific World Jo., 2014 (2014), Article ID 369798, 7 pages, http://dx.doi.org/10.1155/2014/369798. |
[4] |
W. Gao, L. Liang, T. W. Xu and J. X. Zhou,
Tight toughness condition for fractional (g, f, n)-critical graphs, J. Korean Math. Soc., 51 (2014), 55-65.
doi: 10.4134/JKMS.2014.51.1.055. |
[5] |
W. Gao, L. Liang, T. W. Xu and J. X. Zhou,
Degree conditions for fractional (g, f, n', m)-critical deleted graphs and fractional ID-(g, f, m)-deleted graphs, Bull. Malays. Math. Sci. Soc., 39 (2016), 315-330.
doi: 10.1007/s40840-015-0194-1. |
[6] |
W. Gao and M. R. Farahani,
Degree-based indices computation for special chemical molecular structures using edge dividing method, Appl. Math. Nonl. Sc., 1 (2016), 94-117.
|
[7] |
W. Gao and W. F. Wang,
Degree conditions for fractional (k, m)-deleted graphs, Ars. Combin., 113A (2014), 273-285.
|
[8] |
W. Gao and W. F. Wang,
Toughness and fractional critical deleted graph, Utilitas Math., 98 (2015), 295-310.
|
[9] |
W. Gao and W. F. Wang,
A tight neighborhood union condition on fractional (g, f, n, m)-critical deleted graphs, Colloq. Math., 149 (2017), 291-298.
doi: 10.4064/cm6959-8-2016. |
[10] |
W. Gao and W. F. Wang,
New isolated toughness condition for fractional (g, f, n)-critical graphs, Colloq. Math., 147 (2017), 55-65.
doi: 10.4064/cm6713-8-2016. |
[11] |
W. Gao and C. C. Yan,
A note on fractional (k, n', m)-critical deleted graph, Advances in Computational Mathematics and its Applications, 1 (2012), 53-55.
|
[12] |
S. Z. Zhou,
A minimum degree condition of fractional (k, m)-deleted graphs, Comptes Rendus Math., 347 (2009), 1223-1226.
doi: 10.1016/j.crma.2009.09.022. |
[13] |
S. Z. Zhou,
A neighborhood condition for graphs to be fractional (k, m)- deleted graphs, Glasg. Math. J., 52 (2010), 33-40.
doi: 10.1017/S0017089509990139. |
[14] |
S. Z. Zhou,
A sufficient condition for a graph to be a fractional (f, n)-critical graph, Glasgow Math. J., 52 (2010), 409-415.
doi: 10.1017/S001708951000011X. |
[15] |
S. Z. Zhou and H. Liu,
On fractional (k, m)-deleted graphs with constrains conditions, Int. J. Comput. Math. Sci., 5 (2011), 130-132.
|
[16] |
S. Z. Zhou,
A sufficient condition for graphs to be fractional (k, m)-deleted graphs, Appl. Math. Lett., 24 (2011), 1533-1538.
doi: 10.1016/j.aml.2011.03.041. |
[17] |
S. Z. Zhou and Q. X. Bian,
An existence theorem on fractional deleted graphs, Period. Math. Hung., 71 (2015), 125-133.
doi: 10.1007/s10998-015-0089-9. |
show all references
References:
[1] |
J. A. Bondy and U. S. R. Mutry,
Graph Theory, Springer, Berlin, 2008.
doi: 10.1007/978-1-84628-970-5. |
[2] |
W. Gao,
Some Results on Fractional Deleted Graphs, Doctoral disdertation of Soochow university, 2012. |
[3] |
W. Gao and Y. Gao, Toughness condition for a graph to be a fractional (g, f, n)-critical deleted graph, The Scientific World Jo., 2014 (2014), Article ID 369798, 7 pages, http://dx.doi.org/10.1155/2014/369798. |
[4] |
W. Gao, L. Liang, T. W. Xu and J. X. Zhou,
Tight toughness condition for fractional (g, f, n)-critical graphs, J. Korean Math. Soc., 51 (2014), 55-65.
doi: 10.4134/JKMS.2014.51.1.055. |
[5] |
W. Gao, L. Liang, T. W. Xu and J. X. Zhou,
Degree conditions for fractional (g, f, n', m)-critical deleted graphs and fractional ID-(g, f, m)-deleted graphs, Bull. Malays. Math. Sci. Soc., 39 (2016), 315-330.
doi: 10.1007/s40840-015-0194-1. |
[6] |
W. Gao and M. R. Farahani,
Degree-based indices computation for special chemical molecular structures using edge dividing method, Appl. Math. Nonl. Sc., 1 (2016), 94-117.
|
[7] |
W. Gao and W. F. Wang,
Degree conditions for fractional (k, m)-deleted graphs, Ars. Combin., 113A (2014), 273-285.
|
[8] |
W. Gao and W. F. Wang,
Toughness and fractional critical deleted graph, Utilitas Math., 98 (2015), 295-310.
|
[9] |
W. Gao and W. F. Wang,
A tight neighborhood union condition on fractional (g, f, n, m)-critical deleted graphs, Colloq. Math., 149 (2017), 291-298.
doi: 10.4064/cm6959-8-2016. |
[10] |
W. Gao and W. F. Wang,
New isolated toughness condition for fractional (g, f, n)-critical graphs, Colloq. Math., 147 (2017), 55-65.
doi: 10.4064/cm6713-8-2016. |
[11] |
W. Gao and C. C. Yan,
A note on fractional (k, n', m)-critical deleted graph, Advances in Computational Mathematics and its Applications, 1 (2012), 53-55.
|
[12] |
S. Z. Zhou,
A minimum degree condition of fractional (k, m)-deleted graphs, Comptes Rendus Math., 347 (2009), 1223-1226.
doi: 10.1016/j.crma.2009.09.022. |
[13] |
S. Z. Zhou,
A neighborhood condition for graphs to be fractional (k, m)- deleted graphs, Glasg. Math. J., 52 (2010), 33-40.
doi: 10.1017/S0017089509990139. |
[14] |
S. Z. Zhou,
A sufficient condition for a graph to be a fractional (f, n)-critical graph, Glasgow Math. J., 52 (2010), 409-415.
doi: 10.1017/S001708951000011X. |
[15] |
S. Z. Zhou and H. Liu,
On fractional (k, m)-deleted graphs with constrains conditions, Int. J. Comput. Math. Sci., 5 (2011), 130-132.
|
[16] |
S. Z. Zhou,
A sufficient condition for graphs to be fractional (k, m)-deleted graphs, Appl. Math. Lett., 24 (2011), 1533-1538.
doi: 10.1016/j.aml.2011.03.041. |
[17] |
S. Z. Zhou and Q. X. Bian,
An existence theorem on fractional deleted graphs, Period. Math. Hung., 71 (2015), 125-133.
doi: 10.1007/s10998-015-0089-9. |
[1] |
Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045 |
[2] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control and Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[3] |
Günter Leugering, Gisèle Mophou, Maryse Moutamal, Mahamadi Warma. Optimal control problems of parabolic fractional Sturm-Liouville equations in a star graph. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022015 |
[4] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks and Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003 |
[5] |
Shaowen Shi, Weinian Zhang. Bifurcations in an economic model with fractional degree. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4407-4431. doi: 10.3934/dcdsb.2020293 |
[6] |
David Auger, Irène Charon, Iiro Honkala, Olivier Hudry, Antoine Lobstein. Edge number, minimum degree, maximum independent set, radius and diameter in twin-free graphs. Advances in Mathematics of Communications, 2009, 3 (1) : 97-114. doi: 10.3934/amc.2009.3.97 |
[7] |
Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2065-2100. doi: 10.3934/cpaa.2021058 |
[8] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[9] |
Oded Schramm. Hyperfinite graph limits. Electronic Research Announcements, 2008, 15: 17-23. doi: 10.3934/era.2008.15.17 |
[10] |
J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413 |
[11] |
John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16. |
[12] |
Roberto De Leo, James A. Yorke. The graph of the logistic map is a tower. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5243-5269. doi: 10.3934/dcds.2021075 |
[13] |
Roy H. Goodman. NLS bifurcations on the bowtie combinatorial graph and the dumbbell metric graph. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2203-2232. doi: 10.3934/dcds.2019093 |
[14] |
Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013 |
[15] |
Mario Roy, Mariusz Urbański. Random graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 261-298. doi: 10.3934/dcds.2011.30.261 |
[16] |
Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei. HERMES: Persistent spectral graph software. Foundations of Data Science, 2021, 3 (1) : 67-97. doi: 10.3934/fods.2021006 |
[17] |
Dominique Zosso, Braxton Osting. A minimal surface criterion for graph partitioning. Inverse Problems and Imaging, 2016, 10 (4) : 1149-1180. doi: 10.3934/ipi.2016036 |
[18] |
Mario Jorge Dias Carneiro, Rafael O. Ruggiero. On the graph theorem for Lagrangian minimizing tori. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6029-6045. doi: 10.3934/dcds.2018260 |
[19] |
Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615 |
[20] |
Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285 |
2021 Impact Factor: 1.865
Tools
Article outline
[Back to Top]