\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm

  • * Corresponding author: Xiaoguang Xu

    * Corresponding author: Xiaoguang Xu 
Abstract / Introduction Full Text(HTML) Figure(6) / Table(2) Related Papers Cited by
  • As a basic and fundamental problem in wireless sensor network (WSN), the network coverage greatly reflects the performance of information transmission in WSN. In order to achieve a good balance between target coverage and energy consumption, in this paper, we propose a novel wireless sensor network energy efficient coverage method based on genetic algorithm. Particularly, the goal of this work is cover a 2D sensing area via selecting a minimum number of sensors. Moreover, the deployed wireless sensors should be connected to let each sensor be connected a path to the base station. Afterwards, genetic algorithm is used to compute the minimum number of potential position to let all target be k-covered and all sensor nodes be m-connected, and each chromosome is set to be the number of potential positions. Finally, we provide a simulation to test the performance of the proposed method, and simulation results demonstrate that the proposed method can achieve high degree of target coverage without wasting extra energy.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  An example of node deployment scheme

    Figure 2.  Initial node deployment for different schemes

    Figure 3.  Coverage ratio for various number of sensors

    Figure 4.  Maximum moved distance for various number of sensors

    Figure 5.  Network lifetime with various number of sensors

    Figure 6.  Network lifetime with various number of targets

    Table 1.  Simulation settings

    Parameter Value
    Sensing field $50\times50$m$^2$
    Coverage radius 5m
    Number of targets 10-60
    Initial population size 60
    Mutation rate 3 %
     | Show Table
    DownLoad: CSV

    Table 2.  Energy cost in this experiment

    Working state Energy cost(mA)
    Active 13.58
    Transmitting 14.41
    Receiving 9.37
     | Show Table
    DownLoad: CSV
  • [1] A. A. Abbasi and M. Younis, A survey on clustering algorithms for wireless sensor networks, Computer Communications, 30 (2007), 2826-2841. 
    [2] G. Ahmed and N. M. Khan, Adaptive power-control based energy-efficient routing in wireless sensor networks, Wireless Personal Communications, 94 (2017), 1297-1329. 
    [3] I. F. AkyildizT. Melodia and K. R. Chowdhury, A survey on wireless multimedia sensor networks, Computer Networks, 51 (2007), 921-960. 
    [4] I. F. AkyildizW. SuY. Sankarasubramaniam and E. Cayirci, Wireless sensor networks: A survey, Computer Networks, 38 (2002), 393-422. 
    [5] O. M. Alia and A. Al-Ajouri, Maximizing wireless sensor network coverage with minimum cost using harmony search algorithm, Ieee Sensors Journal, 17 (2017), 882-896. 
    [6] M. AlipioN. M. TiglaoA. GriloF. BokhariU. Chaudhry and S. Qureshi, Cache-based transport protocols in wireless sensor networks: A survey and future directions, Journal of Network and Computer Applications, 88 (2017), 29-49. 
    [7] G. AnastasiC. MarcoM. Di Francesco and A. Passarella, Energy conservation in wireless sensor networks: A survey, Ad Hoc Networks, 7 (2009), 537-568. 
    [8] N. A. AzizA. W. MohemmedM. Y. AliasK. Aziz and S. Syahali, Coverage maximization and energy conservation for mobile wireless sensor networks: A two phase particle swarm optimization algorithm, International Journal of Natural Computing Research, 3 (2012), 43-63. 
    [9] M. BoudaliM. R. SenouciM. Aissani and W. K. Hidouci, Activities scheduling algorithms based on probabilistic coverage models for wireless sensor networks, Annals of Telecommunications, 72 (2017), 221-232. 
    [10] A. BoudriesM. Amad and P. Siarry, Novel approach for replacement of a failure node in wireless sensor network, Telecommunication Systems, 65 (2017), 341-350. 
    [11] K. Bouyahia and M. Benchaiba, CRVR: Connectivity Repairing in Wireless Sensor Networks with Void Regions, Journal of Network and Systems Management, 25 (2017), 536-557. 
    [12] H. Hakli and H. Uguz, A novel approach for automated land partitioning using genetic algorithm, Expert Systems with Applications, 82 (2017), 10-18. 
    [13] G. J. HanL. LiuJ. F. JiangL. Shu and G. Hancke, Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks, Ieee Transactions on Industrial Informatics, 13 (2017), 135-143. 
    [14] S. KebirI. Borne and D. Meslati, A genetic algorithm-based approach for automated refactoring of component-based software, Information and Software Technology, 88 (2017), 17-36. 
    [15] P. Martinez-CanadaC. MorillasH. E. PlesserS. Romero and F. Pelayo, Genetic algorithm for optimization of models of the early stages in the visual system, Neurocomputing, 250 (2017), 101-108. 
    [16] A. Mehrabi and K. Kim, General framework for network throughput maximization in sink-based energy harvesting wireless sensor networks, IEEE Transactions on Mobile Computing, 16 (2017), 1881-1896. 
    [17] T. NguyenC. So-InN. Nguyen and S. Phoemphon, A novel energy-efficient clustering protocol with area coverage awareness for wireless sensor networks, Peer-to-Peer Networking and Applications, 10 (2017), 519-536. 
    [18] A. PananjadyV. K. Bagaria and R. Vaze, Optimally Approximating the Coverage Lifetime of Wireless Sensor Networks, IEEE-ACM Transactions on Networking, 25 (2017), 98-111. 
    [19] D. Raposo, A. Rodrigues, J. S. Silva and F. Boavida, A Taxonomy of Faults for Wireless Sensor Networks, Journal of Network and Systems Management, 25 (2017), 591-611.
    [20] J. So and H. Byun, Load-Balanced Opportunistic Routing for Duty-Cycled Wireless Sensor Networks, Ieee Transactions on Mobile Computing, 16 (2017), 1940-1955. 
    [21] Z. Y. SunY. X. ShuX. F. XingW. WeiH. B. Song and W. Li, LPOCS: A Novel Linear Programming Optimization Coverage Scheme in Wireless Sensor Networks, Ad Hoc & Sensor Wireless Networks, 33 (2016), 173-197. 
    [22] Z. Y. SunY. S. ZhangY. L. NieW. WeiJ. Lloret and H. B. Song, CASMOC: a novel complex alliance strategy with multi-objective optimization of coverage in wireless sensor networks, Wireless Networks, 23 (2017), 1201-1222. 
    [23] G. K. C. Thevar and G. Rohini, Energy efficient geographical key management scheme for authentication in mobile wireless sensor networks, Wireless Networks, 23 (2017), 1479-1489. 
    [24] L. WangP. H. Kao and M. T. Wu, Using Partial Coverage Strategy to Prolong Service Time of a Cluster Based Wireless Sensor Network, Journal of Internet Technology, 18 (2017), 371-377. 
    [25] D. S. WangM. ZhangZ. LiC. SongM. X. FuJ. Li and X. Chen, System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm, Optics Communications, 399 (2017), 1-12. 
    [26] M. Wazid and A. K. Das, A secure group-based blackhole node detection scheme for hierarchical wireless sensor networks, Wireless Personal Communications, 94 (2017), 1165-1191. 
    [27] C. L. Yang and K. W. Chin, On nodes placement in energy harvesting wireless sensor networks for coverage and connectivity, Ieee Transactions on Industrial Informatics, 13 (2017), 27-36. 
    [28] J. YickB. Mukherjee and D. Ghosal, Wireless sensor network survey, Computer Networks, 52 (2008), 2292-2330. 
  • 加载中
Open Access Under a Creative Commons license

Figures(6)

Tables(2)

SHARE

Article Metrics

HTML views(3360) PDF downloads(959) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return