[1]
|
M. Aghassi and D. Bertsimas, Robust game theory, Mathematical Programming, 107 (2006), 231-273.
doi: 10.1007/s10107-005-0686-0.
|
[2]
|
A. Ben Tal and A. Nemirovski, Robust convex optimization, Mathematical Methods of Operations Research, 23 (1998), 769-805.
doi: 10.1287/moor.23.4.769.
|
[3]
|
M. Breton, G. Zaccour and M. Zahaf, A game-theoretic formulation of joint implementation of environmental projects, European Journal of Operational Research, 168 (2005), 221-239.
doi: 10.1016/j.ejor.2004.04.026.
|
[4]
|
S. Boyd and L. Vandenberghe,
Convex Optimization Cambridge, U.K.: Cambridge University, Press, 2004.
doi: 10.1017/CBO9780511804441s.
|
[5]
|
X. Chen, M. Sim, P. Sun and J. W. Zhang, A linear-decision based approximation approach to stochastic programming, Operational Research, 56 (2008), 344-357.
doi: 10.1287/opre.1070.0457.
|
[6]
|
E. Delage and S. Mannor, Distributionally robust optimization under moment uncertainty with application data-driven problems, Operational Research, 58 (2010), 596-612.
doi: 10.1287/opre.1090.0741.
|
[7]
|
A. M. Fink, Equilibrium in a stochastic n-person game, Journal of Science in Hiroshima University, series A-I, 28 (1964), 89-93.
|
[8]
|
R. W. Freund, F. Jarre and C. H. Vogelbusch, Nonlinear semidefinite programming: Sensitivity, convergence, and an application in passive reduced-order modeling, Mathematical Programming, 109 (2007), 581-611.
doi: 10.1007/s10107-006-0028-x.
|
[9]
|
J. Goh and M. Sim, Distributionally robust optimization and its tractable approximation, Operation Reserch, 58 (2010), 902-917.
doi: 10.1287/opre.1090.0795.
|
[10]
|
J. Goh and M. Sim, Robust optimization made easy with ROME, Operation Reserch, 59 (2011), 973-985.
doi: 10.1287/opre.1110.0944.
|
[11]
|
M. Grant and S. Boyd, Graph implementations for nonsmooth convex programs, Lecture Notes in Control and Information Sciences, 371 (2008), 95-110.
doi: 10.1007/978-1-84800-155-8_7.
|
[12]
|
M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 1.21.../../cvx.
|
[13]
|
J. C. Harsanyi, Games with incomplete information played by ’Bayesian’ players’, Parts Ⅰ-Ⅲ, Management Science, 14 (1968), 159-182, 320-334, 486-502.
doi: 10.1287/mnsc.14.5.320.
|
[14]
|
Z. L. Hu, J. Gao and L. J. Hong, Robust simulation of global warming policies using the DICE model, Management Science, 58 (2012), 2190-2206.
|
[15]
|
J. B. Huang, Z. F. Li and S. O. Finance, Risk Hedging Strategies and Its Utility under Distributional Uncertainty Chinese Journal of Management Science, 01 (2017).
|
[16]
|
K. Isii, On the sharpness of Chebyshev-type inequalities, Annals of the Institute of Statistical Mathematics, 12 (1963), 185-197.
doi: 10.1007/BF02868641.
|
[17]
|
B. Jadamba and F. Raciti, RA variational inequality approach to a class of environmental equilibrium problems, Applied Mathematics, 3 (2012), 1723-1728.
|
[18]
|
B. Jadamba and F. Raciti, On the modeling of some environmental games with uncertain data, Journal of Optimization Theory} & \emph{Applications,, 167 (2015), 959-968.
doi: 10.1007/s10957-013-0389-2.
|
[19]
|
J. Janssen, Does international emissions trading jeopardize joint implemention? Distinguishing the Kyoto mechanisms for economic perspectives, In: Abele, H., Heller, T.C., Schleicher, S.P. (Eds.), Designing Climate Policy, Austrian Council of Climate Change, Graz, (2000), 247-277, Abele H, Heller T C, Schleicher S P. Designing Climate Policy: The Challenge of the Kyoto Protocol[J]. International Journal of Infectious Diseases, 6 (2001), S54.
|
[20]
|
S. Kakutani, RA generalization of Brouwer's fixed point theorem, Duke Mathematical Journal, 8 (1941), 457-459.
doi: 10.1215/S0012-7094-41-00838-4.
|
[21]
|
E. Kardes, F. Ord$\acute{o}\bar{n}$ez and R. W. Hall, Discounted robust stochastic games and an application to aueueing control, Operation Reserch, 59 (2011), 365-382.
doi: 10.1287/opre.1110.0931.
|
[22]
|
S. W. Lam, T. S. Ng, M. Sim and J. H. Song, Multiple objectives satisficing under uncertainty, Operation Reserch, 61 (2013), 214-227.
doi: 10.1287/opre.1120.1132.
|
[23]
|
G. Lan, Z. Lu and R. D. C. Monteiro, Primal-dual first-order methods with iteration-complexity for cone programming, Mathematical Programming, 126 (2011), 1-29.
doi: 10.1007/s10107-008-0261-6.
|
[24]
|
A. Nemirovski and A. Shapiro, Convex approximations of chance constrained problems, Society for Industrial and Applied Mathematics, 17 (2006), 969-996.
doi: 10.1137/050622328.
|
[25]
|
A. Shapiro, First and second order analysis of nonlinear semidefinite programs, Mathematical Programming, 77 (1997), 301-320.
doi: 10.1007/BF02614439.
|
[26]
|
A. Shapiro, Worst-case distribution analysis of stochastic programs, Mathematical Programming, 107 (2006), 91-96.
doi: 10.1007/s10107-005-0680-6.
|
[27]
|
M. Tidball and G. Zaccour, An environmental game with coupling constraints, Environmental Modeling & Assessment, 10 (2005), 153-158.
|
[28]
|
Y. Zhang, S. Song, Z. Shen and C. Wu, Robust shortest path problem with distributional uncertainty, IEEE Transactions on Intelligent Transportation Systems, 99 (2017), 1-11.
|