\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials

  • * Corresponding author: Shaofei Wu

    * Corresponding author: Shaofei Wu 
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, we will study the uniform $L^1$ stability of the inelastic Boltzmann equation. More precisely, according to the existence result on the inelastic Boltzmann equation with external force near vacuum, we obtain the uniform $L^1$ stability estimates of mild solution for the hard potentials under the assumptions on the characteristic generated by force term which can be arbitrarily large. The proof is based on the exponentially decay estimate and Lu's trick in [10].

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. J. Alonso, Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data, Indiana Univ. Math. J., 58 (2009), 999-1022.  doi: 10.1512/iumj.2009.58.3506.
    [2] L. Arkeryd, Stability in $L^1$ for the spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal., 103 (1988), 151-167.  doi: 10.1007/BF00251506.
    [3] C. H. Cheng, Uniform stability of solutions of Boltzmann equation for soft potential with external force, J. Math. Anal. Appl., 352 (2009), 724-732.  doi: 10.1016/j.jmaa.2008.11.027.
    [4] R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations, Ann. Math., 130 (1989), 321-366.  doi: 10.2307/1971423.
    [5] R. J. Duan, T. Yang and C. J. Zhu, Global existence to Boltzmann equation with external force in infinite vacuum J. Math. Phys. 46 (2005), 053307, 13pp. doi: 10.1063/1.1899985.
    [6] R. J. DuanT. Yang and C. J. Zhu, $L^1$ and BV-type stability of the Boltzmann equation with external forces, J. Differential Equations, 227 (2006), 1-28.  doi: 10.1016/j.jde.2006.01.010.
    [7] S. Y. Ha, $L^1$ stability of the Boltzmann equation for the hard sphere model, Arch. Ration. Mech. Anal., 171 (2004), 279-296.  doi: 10.1007/s00205-004-0321-x.
    [8] S. Y. Ha, Nonlinear functionals of the Boltzmann equation and uniform stability estimates, J. Differential Equations, 215 (2005), 178-205.  doi: 10.1016/j.jde.2004.07.022.
    [9] S. Y. Ha, $L^1$-stability of the Boltzmann equation for Maxwellian molecules, Nonlinearity, 18 (2005), 981-1001.  doi: 10.1088/0951-7715/18/3/003.
    [10] X. Lu, Spatial decay solutions of the Boltzmann equation: Converse properties of long time limiting behavior, SIAM J. Math. Anal., 30 (1999), 1151-1174.  doi: 10.1137/S0036141098334985.
    [11] J. B. Wei and X. W. Zhang, On the Cauchy problem for the inelastic Boltzmann equation with external force, J. Stat. Phys., 146 (2012), 592-609.  doi: 10.1007/s10955-011-0410-9.
    [12] J. B. Wei and X. W. Zhang, Infinite energy solutions of the inelastic Boltzmann equation with external force, Acta Mathematica Scientia, 32 (2012), 2131-2140.  doi: 10.1016/S0252-9602(12)60165-9.
    [13] J. B. Weiand X. W. Zhang, On the inelastic Enskog equation with external force J. Math. Phy. 53 (2012), 103505, 12pp. doi: 10.1063/1.4753988.
    [14] B. Wennberg, Stability and exponential convergence in $L^p$ for the spatially homogeneous Boltzmann equation, Nonlinear Anal. Theory, Methods Appl., 20 (1993), 935-964.  doi: 10.1016/0362-546X(93)90086-8.
    [15] Z. G. Wu, $L^1$ and BV-type stability of the inelastic Boltzmann equation near vacuum, Continuum Mech. Thermodyn, 22 (2010), 239-249.  doi: 10.1007/s00161-009-0127-z.
    [16] S. B. Yun, $L^p$ stability estimate of the Boltzmann equation around a traveling local Maxwellian, J. Differential Equations, 251 (2011), 45-57.  doi: 10.1016/j.jde.2011.03.001.
  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views(2796) PDF downloads(337) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return