August & September  2019, 12(4&5): 1027-1033. doi: 10.3934/dcdss.2019070

Error minimization with global optimization for difference of convex functions

No.10 Xitucheng Road, Haidian District, Beijing, Beijing University of Posts & Telecommunications, Beijing, China

* Corresponding author: Enwen Hu

Received  June 2017 Revised  November 2017 Published  November 2018

Fund Project: The first author is supported by The National Key Research and Development Program of China grant 2016YFB0502001.

In this paper, a hybrid positioning method based on global optimization for difference of convex functions (D.C.) with time of arrival (TOA) and angle of arrival (AOA) measurements are proposed. Traditional maximum likelihood (ML) formulation for indoor localization is a nonconvex optimization problem. The relaxation methods can?t provide a global solution. We establish a D.C. model for TOA/AOA fusion positioning model and give a solution with a global optimization. Simulations based on TC-OFDM signal system show that the proposed method is efficient and more robust as compared to the existing ML estimation and convex relaxation.

Citation: Zhongliang Deng, Enwen Hu. Error minimization with global optimization for difference of convex functions. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1027-1033. doi: 10.3934/dcdss.2019070
References:
[1]

P. BiswasT. C. Lian and T. C. Wang, Semidefinite programming based algorithms for sensor network localization, J.ACM Transactions on Sensor Networks, 2 (2006), 188-220.   Google Scholar

[2]

R. Faragher and R. Harle, Location fingerprinting with bluetooth low energy beacons, J.IEEE Journal on Selected Areas in Communications, 33 (2015), 2418-2428.   Google Scholar

[3]

J. B. Hiriart-Urruty and C. Lemar chal, Convex analysis and minimization algorithms, Springer-Verlag, (1993), 150-159.   Google Scholar

[4]

W. L. Lin and Z. L. Deng, Dimensional functional differential convergence for Cramer-Rao lower bound, J. Journal of Difference Equations & Applications, 23 (2017), 249-257.  doi: 10.1080/10236198.2016.1216549.  Google Scholar

[5]

K. LiuG. Motta and T. Ma, Multi-floor indoor navigation with geomagnetic field positioning and ant colony optimization algorithm, C.IEEE, (2016), 314-323.   Google Scholar

[6]

R. Maalek and F. Sadeghpour, Accuracy assessment of ultra-wide band technology in locating dynamic resources in indoor scenarios, J.Automation in Construction, 63 (2016), 12-26.   Google Scholar

[7]

V. MorenoM. A. Zamora and A. F. Skarmeta, A low-cost indoor lcalization system for energy sustainability in smart buildings, J.IEEE Sensors Journal, 16 (2016), 3246-3262.   Google Scholar

[8]

N. M. NamN. T. An and R. B. Rector, Nonsmooth algorithms and nesterov's smoothing technique for generalized fermat--torricelli problems, J. Siam Journal on Optimization, 24 (2013), 1815-1839.  doi: 10.1137/130945442.  Google Scholar

[9]

S. PaganoS. Peirani and M. Valle, Indoor ranging and localisation algorithm based on received signal strength indicator using statistic parameters for wireless sensor networks, J.IET Wireless Sensor Systems, 5 (2015), 243-249.   Google Scholar

[10]

A. S. Strekalovsky, Global optimality conditions in nonconvex Optimization, J.Journal of Optimization Theory & Applications, 173 (2017), 770-792.  doi: 10.1007/s10957-016-0998-7.  Google Scholar

[11]

J. SuhS. You and S. Choi, Vision-based coordinated localization for mobile sensor networks, J.IEEE Transactions on Automation Science and Engineering, 13 (2016), 611-620.   Google Scholar

[12]

Z. SunA. Purohit and K. Chen, PANDAA: physical arrangement detection of networked devices through ambient-sound awareness, C.ACM, 13 (2011), 425-434.   Google Scholar

[13]

R. XuW. Chen and Y. Xu, A new indoor positioning system architecture using GPS signals, J.Sensors, 15 (2015), 10074-10087.   Google Scholar

[14]

L. YangY. Chen and X. Y. Li, Tagoram: real-time tracking of mobile RFID tags to high precision using COTS devices, C.ACM, 13 (2014), 237-248.   Google Scholar

[15]

Y. ZhuangZ. Syed and Y. Li, Evaluation of two WiFi positioning systems based on autonomous crowd sourcing on handheld devices for indoor navigation, J.IEEE Transactions on Mobile Computing, 15 (2016), 1982-1995.   Google Scholar

show all references

References:
[1]

P. BiswasT. C. Lian and T. C. Wang, Semidefinite programming based algorithms for sensor network localization, J.ACM Transactions on Sensor Networks, 2 (2006), 188-220.   Google Scholar

[2]

R. Faragher and R. Harle, Location fingerprinting with bluetooth low energy beacons, J.IEEE Journal on Selected Areas in Communications, 33 (2015), 2418-2428.   Google Scholar

[3]

J. B. Hiriart-Urruty and C. Lemar chal, Convex analysis and minimization algorithms, Springer-Verlag, (1993), 150-159.   Google Scholar

[4]

W. L. Lin and Z. L. Deng, Dimensional functional differential convergence for Cramer-Rao lower bound, J. Journal of Difference Equations & Applications, 23 (2017), 249-257.  doi: 10.1080/10236198.2016.1216549.  Google Scholar

[5]

K. LiuG. Motta and T. Ma, Multi-floor indoor navigation with geomagnetic field positioning and ant colony optimization algorithm, C.IEEE, (2016), 314-323.   Google Scholar

[6]

R. Maalek and F. Sadeghpour, Accuracy assessment of ultra-wide band technology in locating dynamic resources in indoor scenarios, J.Automation in Construction, 63 (2016), 12-26.   Google Scholar

[7]

V. MorenoM. A. Zamora and A. F. Skarmeta, A low-cost indoor lcalization system for energy sustainability in smart buildings, J.IEEE Sensors Journal, 16 (2016), 3246-3262.   Google Scholar

[8]

N. M. NamN. T. An and R. B. Rector, Nonsmooth algorithms and nesterov's smoothing technique for generalized fermat--torricelli problems, J. Siam Journal on Optimization, 24 (2013), 1815-1839.  doi: 10.1137/130945442.  Google Scholar

[9]

S. PaganoS. Peirani and M. Valle, Indoor ranging and localisation algorithm based on received signal strength indicator using statistic parameters for wireless sensor networks, J.IET Wireless Sensor Systems, 5 (2015), 243-249.   Google Scholar

[10]

A. S. Strekalovsky, Global optimality conditions in nonconvex Optimization, J.Journal of Optimization Theory & Applications, 173 (2017), 770-792.  doi: 10.1007/s10957-016-0998-7.  Google Scholar

[11]

J. SuhS. You and S. Choi, Vision-based coordinated localization for mobile sensor networks, J.IEEE Transactions on Automation Science and Engineering, 13 (2016), 611-620.   Google Scholar

[12]

Z. SunA. Purohit and K. Chen, PANDAA: physical arrangement detection of networked devices through ambient-sound awareness, C.ACM, 13 (2011), 425-434.   Google Scholar

[13]

R. XuW. Chen and Y. Xu, A new indoor positioning system architecture using GPS signals, J.Sensors, 15 (2015), 10074-10087.   Google Scholar

[14]

L. YangY. Chen and X. Y. Li, Tagoram: real-time tracking of mobile RFID tags to high precision using COTS devices, C.ACM, 13 (2014), 237-248.   Google Scholar

[15]

Y. ZhuangZ. Syed and Y. Li, Evaluation of two WiFi positioning systems based on autonomous crowd sourcing on handheld devices for indoor navigation, J.IEEE Transactions on Mobile Computing, 15 (2016), 1982-1995.   Google Scholar

Figure 1.  Simulation scenario and sensor nodes distribution
Figure 2.  PDF of positioning error for different methods
Figure 3.  RMSE of target location estimate versus $\sigma_{\theta}$ and $\sigma_{t}$
Table 1.  Global optimization of error minimization
INPUT: $t_1, \theta_1 \in IR$
For $k = 1, \cdots, N$ do
Find $u_k$ approximately by solving the problem
$\partial \left(F\left(u_{k}, \aleph \right)+\Lambda \left(u_{k}\right)\right)-\Lambda^{'}\left(u_{k}\right)+N\left(u_{k};S\right)=0$
Find $\Phi_{k+1} \in \Phi\left(u_{k}\right)$ by solving the problem
minimize $F\left(u_{k}, \aleph\right)+\Lambda\left(u_k\right)-\Phi_{k+1}$
End for
OUTPUT:$u_{N+1}$
INPUT: $t_1, \theta_1 \in IR$
For $k = 1, \cdots, N$ do
Find $u_k$ approximately by solving the problem
$\partial \left(F\left(u_{k}, \aleph \right)+\Lambda \left(u_{k}\right)\right)-\Lambda^{'}\left(u_{k}\right)+N\left(u_{k};S\right)=0$
Find $\Phi_{k+1} \in \Phi\left(u_{k}\right)$ by solving the problem
minimize $F\left(u_{k}, \aleph\right)+\Lambda\left(u_k\right)-\Phi_{k+1}$
End for
OUTPUT:$u_{N+1}$
[1]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[2]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[3]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[4]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[5]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[6]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[7]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[8]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[9]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[10]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[11]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[15]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[16]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (95)
  • HTML views (389)
  • Cited by (0)

Other articles
by authors

[Back to Top]