August & September  2019, 12(4&5): 1035-1052. doi: 10.3934/dcdss.2019071

A novel road dynamic simulation approach for vehicle driveline experiments

1. 

Key Laboratory of Advanced Manufacture Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400054, China

2. 

Chongqing Tsingshan Industrial, Chongqing 402761, China

3. 

Chongqing Vocational Institute of Engineering, Chongqing 402260, China

4. 

Chongqing Tsingshan Industrial, Chongqing 402761, China

5. 

Chongqing Academy of Science and Technology, Chongqing 401123, China

* Corresponding author: Wen-Li Li

Received  July 2017 Revised  January 2018 Published  November 2018

A dynamic simulation approach for performing emulation experiments on vehicle driveline test bench is discussed in this paper. In order to reduce costs and shorten new vehicle development cycle time, vehicle simulation on the driveline test bench is an attractive alternative at the development phase to reduce the quantity of proto vehicles. This test method moves the test site from the road to the bench without the need for real chassis parts. Dynamic emulation of mechanical loads is a Hardware-in-the-loop (HIL) procedure, which can be used as a supplement of the conventional simulations in testing of the operation of algorithms without the need for the prototypes. The combustion engine is replaced by a electric drive motor, which replicates the torque and speed signature of an actual engine, The road load resistance of the vehicle on a real test road is accurately simulated on load dynamometer motor. On the basis of analyzing and comparing the advantages and disadvantages of the inverse dynamics model and the forward model based on speed closed loop control method, in view of the high order, nonlinear and multi variable characteristics of test bench system, a load simulation method based on speed adaptive predictive control is presented. It avoids the complex algorithm of closed loop speed compensation, and reduces the influence of inaccurate model parameters on the control precision of the simulation system. The vehicle start and dynamic shift process were simulated on the test bench.

Citation: Wen-Li Li, Jing-Jing Wang, Xiang-Kui Zhang, Peng Yi. A novel road dynamic simulation approach for vehicle driveline experiments. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1035-1052. doi: 10.3934/dcdss.2019071
References:
[1]

R. Ahlawat, S. Jiang and D. Medonza, et al., Engine torque pulse and wheel slip emulation for transmission-in-the-loop experiments, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Montréal, Canada, 2010, 688-695. Google Scholar

[2]

Z. H. AkpolatG. M. Asher and J. C. Clare, A practical approach to the design of robust speed controllers for machine drives, IEEE Trans. on Industrial Electronics, 47 (2000), 315-324.   Google Scholar

[3]

Z. H. AkpolatG. M. Asher and J. C. Clare, Dynamic emulation of mechanical loads using a vector controlled induction motor-generator set, IEEE Trans. on Industrial Electronics, 46 (1999), 370-379.   Google Scholar

[4]

J. Arellano-PadillaG. Asher and M. Sumner, Control of an ac-dynamometer for dynamic emulation of mechanical loads with stiff and flexible shafts, IEEE Transactions on Industrial Electronics, 53 (2006), 1250-1260.   Google Scholar

[5]

M. Corbett, P. Lamm and J. McNichols, et. al., Effects of transient power extraction on an integratated hardware-in-the-loop aircraft/propulsion/power system, Power Systems Conference. Washington, SAE Internatinal, 2008, Paper No. 2008-01-2926. Google Scholar

[6]

Z. Hakan AkpolatG. M. Ashen and J. C. Clare, Dynamic emulation of mechanical Loads using a vector-controlled induction motor-generator set, IEEE Transactions on Industrial Lectornics, 46 (1999), 370-379.   Google Scholar

[7]

Z. Hakan AkpolatG. M. Ashen and J. C. Clare, Experimental dynamometer emulation of nonlinear mechanical loads, Industry Applications Society Annual Meeting. St. Louis. IEEE transactions on industrial Applications, 35 (1999), 1367-1373.   Google Scholar

[8]

Z. Hakan Akpolat, G. Asher and J. Clare, Experimental dynamometer emulation of nonlinear mechanical loads, The 1998 IEEE Industry Applications Conference. St. Louis, 1998, 532-539. Google Scholar

[9]

C. Hewson, G. Asher and M. Sumner, Dynamometer control for emulation of mechanical loads, The 1998 IEEE Industry Applications Conference. St. Louis, 1998, 1511-1518. Google Scholar

[10]

S. Jiang, M. H. Smith and J. Kitchen, et al., Development of an engine-in-the-loop vehicle simulation system in engine dynamometer test cell, SAE 2009 World Congress & Amp, Exhibition, United States, SAE International 2009, Paper No 2009-01-1039. Google Scholar

[11]

S. Kaatz, T. Abe and W. Vanhaaften, et al., The ford motor company transmission NVH test cell, Noise & Vibration Conference and Exhibition. Michigan. SAE Internatinal, 2003, Paper No. 2003-01-1681. Google Scholar

[12]

Z.-J. Liu, J.-J. Hu and S. Wen, et al., Design of data acquisition and communication system for AMT comprehensive performance testbench, Journal of Chongqing University: Natural Science Edition, 32 (2009), 775-781. Google Scholar

[13]

N. Newberger, T. A. Nevius and P. Lasota, et al., Virtual engine dynamometer in service life testing of transmissions: A comparison between real engine and electric dynamometers as prime movers in validation test rigs, Extending Dynamometer Performance for Virtual Engine Simulation. International Congress and Exposition, SAE Internatinal, 2010, Paper No. 2010-01-0919. Google Scholar

[14]

R. W. NewtonR. E. Betz and H. B. Penfold, Emulating dynamics load characteristics using a dynamic dynamometer, Proc. Int. Conf. Power Electron. and Drive Syst., 1 (1995), 465-470.   Google Scholar

[15]

M. Rodic, K. Jezernik and M. Trlep, Use of dynamic emulation of mechanical loads in the design of adjustable speed applications, Advanced Motion Control, AMC, Kawasaki, 2004, 677-682. Google Scholar

[16]

M. Rodi$\check{c}$K. Jezernik and M. Trlep, Dynamic emulation of mechanical loads: And advanced approach, IEE Proc., Electr. Power Appl., 153 (2006), 159-166.   Google Scholar

[17]

M. Rodi$\check{c}$K. Jezernik and M. Trlep, A feedforward approach to the dynamic emulation of mechanical loads, Proceedings of the 35th Annual IEEE Power Electronics Specialists Conference(PESC'04), (2004), 4595-4601.   Google Scholar

[18]

W.-J. WangW.-G. Zhang and X. Li, Inertia electrical emulation and angular acceleration estimation for transmission test rig, Journal of Southeast University(Natural Science Edition), 42 (2012), 62-66.   Google Scholar

show all references

References:
[1]

R. Ahlawat, S. Jiang and D. Medonza, et al., Engine torque pulse and wheel slip emulation for transmission-in-the-loop experiments, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Montréal, Canada, 2010, 688-695. Google Scholar

[2]

Z. H. AkpolatG. M. Asher and J. C. Clare, A practical approach to the design of robust speed controllers for machine drives, IEEE Trans. on Industrial Electronics, 47 (2000), 315-324.   Google Scholar

[3]

Z. H. AkpolatG. M. Asher and J. C. Clare, Dynamic emulation of mechanical loads using a vector controlled induction motor-generator set, IEEE Trans. on Industrial Electronics, 46 (1999), 370-379.   Google Scholar

[4]

J. Arellano-PadillaG. Asher and M. Sumner, Control of an ac-dynamometer for dynamic emulation of mechanical loads with stiff and flexible shafts, IEEE Transactions on Industrial Electronics, 53 (2006), 1250-1260.   Google Scholar

[5]

M. Corbett, P. Lamm and J. McNichols, et. al., Effects of transient power extraction on an integratated hardware-in-the-loop aircraft/propulsion/power system, Power Systems Conference. Washington, SAE Internatinal, 2008, Paper No. 2008-01-2926. Google Scholar

[6]

Z. Hakan AkpolatG. M. Ashen and J. C. Clare, Dynamic emulation of mechanical Loads using a vector-controlled induction motor-generator set, IEEE Transactions on Industrial Lectornics, 46 (1999), 370-379.   Google Scholar

[7]

Z. Hakan AkpolatG. M. Ashen and J. C. Clare, Experimental dynamometer emulation of nonlinear mechanical loads, Industry Applications Society Annual Meeting. St. Louis. IEEE transactions on industrial Applications, 35 (1999), 1367-1373.   Google Scholar

[8]

Z. Hakan Akpolat, G. Asher and J. Clare, Experimental dynamometer emulation of nonlinear mechanical loads, The 1998 IEEE Industry Applications Conference. St. Louis, 1998, 532-539. Google Scholar

[9]

C. Hewson, G. Asher and M. Sumner, Dynamometer control for emulation of mechanical loads, The 1998 IEEE Industry Applications Conference. St. Louis, 1998, 1511-1518. Google Scholar

[10]

S. Jiang, M. H. Smith and J. Kitchen, et al., Development of an engine-in-the-loop vehicle simulation system in engine dynamometer test cell, SAE 2009 World Congress & Amp, Exhibition, United States, SAE International 2009, Paper No 2009-01-1039. Google Scholar

[11]

S. Kaatz, T. Abe and W. Vanhaaften, et al., The ford motor company transmission NVH test cell, Noise & Vibration Conference and Exhibition. Michigan. SAE Internatinal, 2003, Paper No. 2003-01-1681. Google Scholar

[12]

Z.-J. Liu, J.-J. Hu and S. Wen, et al., Design of data acquisition and communication system for AMT comprehensive performance testbench, Journal of Chongqing University: Natural Science Edition, 32 (2009), 775-781. Google Scholar

[13]

N. Newberger, T. A. Nevius and P. Lasota, et al., Virtual engine dynamometer in service life testing of transmissions: A comparison between real engine and electric dynamometers as prime movers in validation test rigs, Extending Dynamometer Performance for Virtual Engine Simulation. International Congress and Exposition, SAE Internatinal, 2010, Paper No. 2010-01-0919. Google Scholar

[14]

R. W. NewtonR. E. Betz and H. B. Penfold, Emulating dynamics load characteristics using a dynamic dynamometer, Proc. Int. Conf. Power Electron. and Drive Syst., 1 (1995), 465-470.   Google Scholar

[15]

M. Rodic, K. Jezernik and M. Trlep, Use of dynamic emulation of mechanical loads in the design of adjustable speed applications, Advanced Motion Control, AMC, Kawasaki, 2004, 677-682. Google Scholar

[16]

M. Rodi$\check{c}$K. Jezernik and M. Trlep, Dynamic emulation of mechanical loads: And advanced approach, IEE Proc., Electr. Power Appl., 153 (2006), 159-166.   Google Scholar

[17]

M. Rodi$\check{c}$K. Jezernik and M. Trlep, A feedforward approach to the dynamic emulation of mechanical loads, Proceedings of the 35th Annual IEEE Power Electronics Specialists Conference(PESC'04), (2004), 4595-4601.   Google Scholar

[18]

W.-J. WangW.-G. Zhang and X. Li, Inertia electrical emulation and angular acceleration estimation for transmission test rig, Journal of Southeast University(Natural Science Edition), 42 (2012), 62-66.   Google Scholar

Figure 1.  Mechanical Load Dynamic Emulation Control System
Figure 2.  Inverse Dynamic Model
Figure 3.  Speed Closed Loop Control Algorithm
Figure 4.  Speed closed loop control with feed-forward compensation
Figure 5.  Speed Closed-loop Control with Feed-forward Compensation
Figure 6.  Speed adaptive predictive control
Figure 7.  Schematic diagram of vehicle acceleration resistance
Figure 8.  Control model of speed adaptive predictive control
Figure 9.  The characteristic curves of drive motor and engine
Figure 10.  The characteristic curves of load motor
Figure 11.  Simulation range of electrical inertia on the platform system
Figure 12.  Acceleration inertia simulation curve
Figure 13.  The setup of vehicle driveline test bench
Figure 14.  The clutch control unit of the test bench
Figure 15.  The starting characteristics curves of simulated vehicle
Figure 16.  The shift control unit of the test bench
Figure 17.  Dynamic simulation curves of upshift
Figure 18.  Dynamic simulation curves of downshift
Figure 19.  Dynamic simulation curves of continuous shifting process
Table 1.  The technical data of drive motor
Power
(Kw)
Frequency
(Hz)
Torque
$N\cdot m$
Speed
(r/min)
Moment of inertia
(kg$\cdot$ m$^2$)
235.6 250 360 5000 0.042
Power
(Kw)
Frequency
(Hz)
Torque
$N\cdot m$
Speed
(r/min)
Moment of inertia
(kg$\cdot$ m$^2$)
235.6 250 360 5000 0.042
Table 2.  The technical data of load motor
Power
(Kw)
Frequency
(Hz)
Torque
($N\cdot m$)
Speed
(r/min)
Moment of inertia
(kg$\cdot$ m$^2$)
310 27.2 3701 800 6.3
Power
(Kw)
Frequency
(Hz)
Torque
($N\cdot m$)
Speed
(r/min)
Moment of inertia
(kg$\cdot$ m$^2$)
310 27.2 3701 800 6.3
[1]

Linhao Xu, Marya Claire Zdechlik, Melissa C. Smith, Min B. Rayamajhi, Don L. DeAngelis, Bo Zhang. Simulation of post-hurricane impact on invasive species with biological control management. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4059-4071. doi: 10.3934/dcds.2020038

[2]

Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 769-783. doi: 10.3934/dcdss.2020232

[3]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[4]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[5]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[6]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[7]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[8]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[9]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[10]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[11]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[12]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[13]

Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136

[14]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[15]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[16]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[17]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[18]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[19]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[20]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (84)
  • HTML views (513)
  • Cited by (1)

Other articles
by authors

[Back to Top]