
-
Previous Article
The heterogeneous fleet location routing problem with simultaneous pickup and delivery and overloads
- DCDS-S Home
- This Issue
-
Next Article
Research on regional clustering and two-stage SVM method for container truck recognition
Efficient systolic multiplications in composite fields for cryptographic systems
School of Computer Engineering Shenzhen Polytechnic, Shenzhen 518055, China |
Multiplications in finite fields are playing a key role in areas of cryptography and mathematic. We present approaches to exploit systolic architecture for multiplications in composite fields, which are expected to reduce the time-area product substantially. We design a pipelined architecture for multiplications in composite fields $GF({({2^n})^2})$, where $n$ is a positive integer. Besides, we design systolic architectures for multiplications and additions in finite fields $GF(2^n)$. By integrating main improvements and other minor optimizations for multiplications in $GF({({2^n})^2})$, the non-pipelined versions of our design takes $8n+4$ AND gates and $8n$ XOR gates to compute multiplications with the executing time of $nT_{AND}+4nT_{XOR}$, where $T_{AND}$ and ${T_{XOR}}$ are delays of AND and XOR gates respectively; with the aid of pipelining, the pipelined version of our design has a throughput rate of one result per $2nT_{XOR}$. Other words, the time complexity and area complexity of our design are $O(n)$. Thus, the complexity of time-area product of our design is $O(n^2)$. Experimental results and comparisons show that our design provides significant reductions in executing time and area of multiplications.
References:
[1] |
N. Ahmad and S. M. R. Hasan, Low-power compact composite field AES S-Box/Inv S-Box design in 65 nm CMOS using Novel XOR Gate, Integration the VLSI Journal, 46 (2013), 333-344. Google Scholar |
[2] |
R. Azarderakhsh, Mozaffari-kermani M. high-performance two-dimensional finite field multiplication and exponentiation for cryptographic applications, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34 (2015), 1569-1576. Google Scholar |
[3] |
S. Ballet and R. Rolland,
Multiplication algorithm in a finite field and tensor rank of the multiplication, Journal of Algebra, 272 (2004), 173-185.
doi: 10.1016/j.jalgebra.2003.09.031. |
[4] |
C. Berrou and A. Glavieux, Near optimum error correcting coding and decoding: Turbo-codes, IEEE Transactions on Communications, 44 (1996), 1261-1271. Google Scholar |
[5] |
D. Canright, A very compact S-box for AES, Cryptographic Hardware and Embedded Systems - CHES 2005, International Workshop, Edinburgh, Uk, August 29 - September 1, 2005, Proceedings. DBLP, 2005, 441-455. Google Scholar |
[6] |
M. Cenk, C. K. Koc and F. Ozbudak, Polynomial multiplication over finite fields using field extensions and interpolation, IEEE Symposium on Computer Arithmetic, IEEE Computer Society, 2009, 84-91. Google Scholar |
[7] |
A. Cichocki and R. Unbehauen, Neural networks for solving systems of linear equations and related problems, IEEE Transactions on Circuits and Systems I Fundamental Theory and Applications, 39 (1992), 124-138. Google Scholar |
[8] |
M. Diab, Systolic architectures for multiplication over finite field $ GF(2^m)$, International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Springer-Verlag, 1991, 329-340.
doi: 10.1007/3-540-54195-0_62. |
[9] |
A. Hariri,
Concurrent error detection in montgomery multiplication over binary extension fields, IEEE Transactions on Computers, 60 (2011), 1341-1353.
doi: 10.1109/TC.2010.258. |
[10] |
M. A. Hasan, Look-up table based large finite field multiplication in memory constrained cryptosystems, Cryptography and Coding, IMA International Conference, Cirencester, Uk, December 20-22, 1999, Proceedings. DBLP, 1746 (1999), 213-221.
doi: 10.1007/3-540-46665-7_25. |
[11] |
Z. Huang, G. Q. Bai and H. Y. Chen, FPGA Implementation of Systolic Array for Modular Multiplication Using a Fine-grained Approach, Microelectronics and Computer, 2005. Google Scholar |
[12] |
S. K. Jain, L. Song and K. K. Parhi, Efficient semisystolic architectures for finite-field arithmetic, IEEE Transactions on Very Large Scale Integration Systems, 6 (1998), 101-113. Google Scholar |
[13] |
R. Katti and J. Brennan, Low complexity multiplication in a finite field using ring representation, IEEE Transactions on Computers, 52 (2003), 418-427. Google Scholar |
[14] |
C. H. Kim, C. P. Hong and S. Kwon, A digit-serial multiplier for finite field $ GF(2^m)$, IEEE Transactions on Very Large Scale Integration Systems, 13 (2005), 476-483. Google Scholar |
[15] |
C. Y. Lee and W. C. Che, New bit-parallel systolic architectures for computing multiplication, multiplicative inversion and division in $ gf(2^m)$ under polynomial basis and normal basis representations, Journal of Signal Processing Systems, 52 (2008), 313-324. Google Scholar |
[16] |
D. J. C. Mackay,
Good error-correcting codes based on very sparse matrices, IEEE Transactions on Information Theory, 45 (1999), 399-431.
doi: 10.1109/18.748992. |
[17] |
P. K. Meher, Systolic formulation for low-complexity serial-parallel implementation of unified finite field multiplication over $ GF(2^m)$, IEEE International Conf. on Application -specific Systems, Architectures and Processors. 2007, 134-139. Google Scholar |
[18] |
P. K. Meher,
Systolic and super-systolic multipliers for finite field $ GF(2^m)$ based on irreducible trinomials, IEEE Transactions on Circuits and Systems, 55 (2008), 1031-1040.
doi: 10.1109/TCSI.2008.916622. |
[19] |
A. H. Namin, H. Wu and M. Ahmadi,
Comb architectures for finite field multiplication in $ F(2^m)$, IEEE Transactions on Computers, 56 (2007), 909-916.
doi: 10.1109/TC.2007.1047. |
[20] |
S. H. Namin, H. Wu and M. Ahmadi, Low-power design for a digit-serial polynomial basis finite field multiplier using factoring technique, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25 (2017), 441-449. Google Scholar |
[21] |
P. Ning and Y. L. Yin, Efficient software implementation for finite field multiplication in normal basis, International Conference on Information and Communications Security, Springer-Verlag, 2001,177-188. Google Scholar |
[22] |
J. S. Pan, C. Y. Lee and P. K. Meher, Low-latency digit-serial and digit-parallel systolic multipliers for large binary extension fields, IEEE Transactions on Circuits & Systems I Regular Papers, 60 (2013), 3195-3204. Google Scholar |
[23] |
A. Petzoldt, S. Bulygin and J. Buchmann, Selecting parameters for the rainbow signature scheme, Post-Quantum Cryptography, Third International Workshop, PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. Proceedings. DBLP, 2010,218-240.
doi: 10.1007/978-3-642-12929-2_16. |
[24] |
A. Pincin,
A new algorithm for multiplication in finite fields, IEEE Transactions on Computers, 38 (1989), 1045-1049.
doi: 10.1109/12.30855. |
[25] |
A. Reyhani-Masoleh and M. A. Hasan, Low complexity bit parallel architectures for polynomial basis multiplication over $ GF(2^m)$, IEEE Transactions on Computers, 53 (2004), 945-959. Google Scholar |
[26] |
A. Satoh, S. Morioka and K. Takano, et al., A compact rijndael hardware architecture with S-box optimization, Advances in Cryptology-ASIACRYPT 2001., Springer Berlin Heidelberg, 2248 (2001), 239-254.
doi: 10.1007/3-540-45682-1_15. |
[27] |
T. Shirai, K. Shibutani and T. Akishita, et al., The 128-bit blockcipher CLEFIA, Proceedings of the 14th International Conference on Fast Software Encryption, Springer-Verlag, 2007,181-195. Google Scholar |
[28] |
M. Sudan,
Decoding of reed solomon codes beyond the error-correction bound, Journal of Complexity, 13 (1997), 180-193.
doi: 10.1006/jcom.1997.0439. |
[29] |
S. Tang, H. Yi and J. Ding, et al., High-speed hardware implementation of rainbow signature on FPGAs, Post-Quantum Cryptography. Springer Berlin Heidelberg, 2011,228-243. Google Scholar |
[30] |
C. L. Wang and J. L. Lin, Systolic array implementation of multipliers for finite fields $ GF(2^m)$, IEEE Transactions on Circuits and Systems, 38 (1991), 796-800. Google Scholar |
[31] |
C. W. Wu and M. K. Chang, Bit-level systolic arrays for finite-field multiplications, Journal of Signal Processing Systems, 10 (1995), 85-92. Google Scholar |
[32] |
H. Wu,
Bit-parallel finite field multiplier and squarer using polynomial basis, IEEE Transactions on Computers, 51 (2002), 750-758.
doi: 10.1109/TC.2002.1017695. |
[33] |
J. Xie, J. J. He and P. K. Meher, Low latency systolic montgomery multiplier for finite field $ GF(2^m)$ based on pentanomials, IEEE Transactions on Very Large Scale Integration Systems, 21 (2013), 385-389. Google Scholar |
[34] |
J. Xie, P. K. Meher and Z. H. Mao,
Low-latency high-throughput systolic multipliers over $ GF(2^m)$ for NIST recommended pentanomials, IEEE Transactions on Circuits & Systems I Regular Papers, 62 (2015), 881-890.
doi: 10.1109/TCSI.2014.2386782. |
[35] |
H. Yi and W. Li, Fast three-input multipliers over small composite fields for multivariate public key cryptography, International Journal of Security and Its Applications, 9 (2015), 165-178. Google Scholar |
[36] |
H. Yi, W. Li and Z. Nie, Fast hardware implementations of inversions in small finite fields for special irreducible polynomials on FPGAs, International Journal of Security and Its Applications, 19 (2016), 109-C120. Google Scholar |
[37] |
H. Yi and S. Tang,
Very small FPGA processor for multivariate signatures, Computer Journal, 59 (2016), 1091-1101.
doi: 10.1093/comjnl/bxw008. |
[38] |
H. Yi, S. Tang and R. Vemuri,
Fast inversions in small finite fields by using binary trees, The Computer Journal, 59 (2016), 1102-1112.
doi: 10.1093/comjnl/bxw009. |
show all references
References:
[1] |
N. Ahmad and S. M. R. Hasan, Low-power compact composite field AES S-Box/Inv S-Box design in 65 nm CMOS using Novel XOR Gate, Integration the VLSI Journal, 46 (2013), 333-344. Google Scholar |
[2] |
R. Azarderakhsh, Mozaffari-kermani M. high-performance two-dimensional finite field multiplication and exponentiation for cryptographic applications, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34 (2015), 1569-1576. Google Scholar |
[3] |
S. Ballet and R. Rolland,
Multiplication algorithm in a finite field and tensor rank of the multiplication, Journal of Algebra, 272 (2004), 173-185.
doi: 10.1016/j.jalgebra.2003.09.031. |
[4] |
C. Berrou and A. Glavieux, Near optimum error correcting coding and decoding: Turbo-codes, IEEE Transactions on Communications, 44 (1996), 1261-1271. Google Scholar |
[5] |
D. Canright, A very compact S-box for AES, Cryptographic Hardware and Embedded Systems - CHES 2005, International Workshop, Edinburgh, Uk, August 29 - September 1, 2005, Proceedings. DBLP, 2005, 441-455. Google Scholar |
[6] |
M. Cenk, C. K. Koc and F. Ozbudak, Polynomial multiplication over finite fields using field extensions and interpolation, IEEE Symposium on Computer Arithmetic, IEEE Computer Society, 2009, 84-91. Google Scholar |
[7] |
A. Cichocki and R. Unbehauen, Neural networks for solving systems of linear equations and related problems, IEEE Transactions on Circuits and Systems I Fundamental Theory and Applications, 39 (1992), 124-138. Google Scholar |
[8] |
M. Diab, Systolic architectures for multiplication over finite field $ GF(2^m)$, International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Springer-Verlag, 1991, 329-340.
doi: 10.1007/3-540-54195-0_62. |
[9] |
A. Hariri,
Concurrent error detection in montgomery multiplication over binary extension fields, IEEE Transactions on Computers, 60 (2011), 1341-1353.
doi: 10.1109/TC.2010.258. |
[10] |
M. A. Hasan, Look-up table based large finite field multiplication in memory constrained cryptosystems, Cryptography and Coding, IMA International Conference, Cirencester, Uk, December 20-22, 1999, Proceedings. DBLP, 1746 (1999), 213-221.
doi: 10.1007/3-540-46665-7_25. |
[11] |
Z. Huang, G. Q. Bai and H. Y. Chen, FPGA Implementation of Systolic Array for Modular Multiplication Using a Fine-grained Approach, Microelectronics and Computer, 2005. Google Scholar |
[12] |
S. K. Jain, L. Song and K. K. Parhi, Efficient semisystolic architectures for finite-field arithmetic, IEEE Transactions on Very Large Scale Integration Systems, 6 (1998), 101-113. Google Scholar |
[13] |
R. Katti and J. Brennan, Low complexity multiplication in a finite field using ring representation, IEEE Transactions on Computers, 52 (2003), 418-427. Google Scholar |
[14] |
C. H. Kim, C. P. Hong and S. Kwon, A digit-serial multiplier for finite field $ GF(2^m)$, IEEE Transactions on Very Large Scale Integration Systems, 13 (2005), 476-483. Google Scholar |
[15] |
C. Y. Lee and W. C. Che, New bit-parallel systolic architectures for computing multiplication, multiplicative inversion and division in $ gf(2^m)$ under polynomial basis and normal basis representations, Journal of Signal Processing Systems, 52 (2008), 313-324. Google Scholar |
[16] |
D. J. C. Mackay,
Good error-correcting codes based on very sparse matrices, IEEE Transactions on Information Theory, 45 (1999), 399-431.
doi: 10.1109/18.748992. |
[17] |
P. K. Meher, Systolic formulation for low-complexity serial-parallel implementation of unified finite field multiplication over $ GF(2^m)$, IEEE International Conf. on Application -specific Systems, Architectures and Processors. 2007, 134-139. Google Scholar |
[18] |
P. K. Meher,
Systolic and super-systolic multipliers for finite field $ GF(2^m)$ based on irreducible trinomials, IEEE Transactions on Circuits and Systems, 55 (2008), 1031-1040.
doi: 10.1109/TCSI.2008.916622. |
[19] |
A. H. Namin, H. Wu and M. Ahmadi,
Comb architectures for finite field multiplication in $ F(2^m)$, IEEE Transactions on Computers, 56 (2007), 909-916.
doi: 10.1109/TC.2007.1047. |
[20] |
S. H. Namin, H. Wu and M. Ahmadi, Low-power design for a digit-serial polynomial basis finite field multiplier using factoring technique, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25 (2017), 441-449. Google Scholar |
[21] |
P. Ning and Y. L. Yin, Efficient software implementation for finite field multiplication in normal basis, International Conference on Information and Communications Security, Springer-Verlag, 2001,177-188. Google Scholar |
[22] |
J. S. Pan, C. Y. Lee and P. K. Meher, Low-latency digit-serial and digit-parallel systolic multipliers for large binary extension fields, IEEE Transactions on Circuits & Systems I Regular Papers, 60 (2013), 3195-3204. Google Scholar |
[23] |
A. Petzoldt, S. Bulygin and J. Buchmann, Selecting parameters for the rainbow signature scheme, Post-Quantum Cryptography, Third International Workshop, PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. Proceedings. DBLP, 2010,218-240.
doi: 10.1007/978-3-642-12929-2_16. |
[24] |
A. Pincin,
A new algorithm for multiplication in finite fields, IEEE Transactions on Computers, 38 (1989), 1045-1049.
doi: 10.1109/12.30855. |
[25] |
A. Reyhani-Masoleh and M. A. Hasan, Low complexity bit parallel architectures for polynomial basis multiplication over $ GF(2^m)$, IEEE Transactions on Computers, 53 (2004), 945-959. Google Scholar |
[26] |
A. Satoh, S. Morioka and K. Takano, et al., A compact rijndael hardware architecture with S-box optimization, Advances in Cryptology-ASIACRYPT 2001., Springer Berlin Heidelberg, 2248 (2001), 239-254.
doi: 10.1007/3-540-45682-1_15. |
[27] |
T. Shirai, K. Shibutani and T. Akishita, et al., The 128-bit blockcipher CLEFIA, Proceedings of the 14th International Conference on Fast Software Encryption, Springer-Verlag, 2007,181-195. Google Scholar |
[28] |
M. Sudan,
Decoding of reed solomon codes beyond the error-correction bound, Journal of Complexity, 13 (1997), 180-193.
doi: 10.1006/jcom.1997.0439. |
[29] |
S. Tang, H. Yi and J. Ding, et al., High-speed hardware implementation of rainbow signature on FPGAs, Post-Quantum Cryptography. Springer Berlin Heidelberg, 2011,228-243. Google Scholar |
[30] |
C. L. Wang and J. L. Lin, Systolic array implementation of multipliers for finite fields $ GF(2^m)$, IEEE Transactions on Circuits and Systems, 38 (1991), 796-800. Google Scholar |
[31] |
C. W. Wu and M. K. Chang, Bit-level systolic arrays for finite-field multiplications, Journal of Signal Processing Systems, 10 (1995), 85-92. Google Scholar |
[32] |
H. Wu,
Bit-parallel finite field multiplier and squarer using polynomial basis, IEEE Transactions on Computers, 51 (2002), 750-758.
doi: 10.1109/TC.2002.1017695. |
[33] |
J. Xie, J. J. He and P. K. Meher, Low latency systolic montgomery multiplier for finite field $ GF(2^m)$ based on pentanomials, IEEE Transactions on Very Large Scale Integration Systems, 21 (2013), 385-389. Google Scholar |
[34] |
J. Xie, P. K. Meher and Z. H. Mao,
Low-latency high-throughput systolic multipliers over $ GF(2^m)$ for NIST recommended pentanomials, IEEE Transactions on Circuits & Systems I Regular Papers, 62 (2015), 881-890.
doi: 10.1109/TCSI.2014.2386782. |
[35] |
H. Yi and W. Li, Fast three-input multipliers over small composite fields for multivariate public key cryptography, International Journal of Security and Its Applications, 9 (2015), 165-178. Google Scholar |
[36] |
H. Yi, W. Li and Z. Nie, Fast hardware implementations of inversions in small finite fields for special irreducible polynomials on FPGAs, International Journal of Security and Its Applications, 19 (2016), 109-C120. Google Scholar |
[37] |
H. Yi and S. Tang,
Very small FPGA processor for multivariate signatures, Computer Journal, 59 (2016), 1091-1101.
doi: 10.1093/comjnl/bxw008. |
[38] |
H. Yi, S. Tang and R. Vemuri,
Fast inversions in small finite fields by using binary trees, The Computer Journal, 59 (2016), 1102-1112.
doi: 10.1093/comjnl/bxw009. |


Stage | Clock Cycle | Executing Time | Area (Logic Gates) |
0 | |||
1 | |||
2 | |||
Total |
Stage | Clock Cycle | Executing Time | Area (Logic Gates) |
0 | |||
1 | |||
2 | |||
Total |
Input | Starting Time | Ending Time |
0 | ||
|
||
|
||
|
||
Input | Starting Time | Ending Time |
0 | ||
|
||
|
||
|
||
Field | Clock Cycle | Executing Time | Throughput | Cells | Area (Logic Gates) |
Field | Clock Cycle | Executing Time | Throughput | Cells | Area (Logic Gates) |
Finite Field | |||||||||||
1.4 | 0.6 | 478.8 | 16.8 | 7.1 | 48 | 17.8 | 7.2 | 45 | |||
|
2.8 | 1.2 | 904.4 | 34.4 | 14.1 | 89 | 35.9 | 14.2 | 83 | ||
|
9.1 | 3.7 | 2819.6 | 116.4 | 44.6 | 245 | < 1% | 117.3 | 46.3 | 232 | < 1% |
|
11.9 | 4.8 | 3670.8 | 147.7 | 58.4 | 313 | < 1% | 152.6 | 60.8 | 298 | < 1% |
|
21.7 | 8.8 | 6650.2 | 271.1 | 102.4 | 557 | < 1% | 275.9 | 110.4 | 537 | < 1% |
|
25.9 | 10.3 | 7926.8 | 321.9 | 125.9 | 634 | < 1% | 329.3 | 131.7 | 614 | < 1% |
|
42.7 | 17.1 | 13034.2 | 541.4 | 211.8 | 1023 | < 1% | 542.9 | 217.2 | 998 | 1.44% |
|
46.7 | 18.8 | 14310.8 | 574.2 | 233.1 | 1124 | < 1% | 589.6 | 238.5 | 1097 | 1.58% |
|
83.3 | 33.4 | 25376.4 | 1055.9 | 411.9 | 2012 | 1.41% | 1059.3 | 423.6 | 1927 | 2.79% |
|
88.9 | 33.6 | 27078.8 | 1134.6 | 446.3 | 2119 | 1.47% | 1141.6 | 456.8 | 2078 | 3.01% |
Finite Field | |||||||||||
1.4 | 0.6 | 478.8 | 16.8 | 7.1 | 48 | 17.8 | 7.2 | 45 | |||
|
2.8 | 1.2 | 904.4 | 34.4 | 14.1 | 89 | 35.9 | 14.2 | 83 | ||
|
9.1 | 3.7 | 2819.6 | 116.4 | 44.6 | 245 | < 1% | 117.3 | 46.3 | 232 | < 1% |
|
11.9 | 4.8 | 3670.8 | 147.7 | 58.4 | 313 | < 1% | 152.6 | 60.8 | 298 | < 1% |
|
21.7 | 8.8 | 6650.2 | 271.1 | 102.4 | 557 | < 1% | 275.9 | 110.4 | 537 | < 1% |
|
25.9 | 10.3 | 7926.8 | 321.9 | 125.9 | 634 | < 1% | 329.3 | 131.7 | 614 | < 1% |
|
42.7 | 17.1 | 13034.2 | 541.4 | 211.8 | 1023 | < 1% | 542.9 | 217.2 | 998 | 1.44% |
|
46.7 | 18.8 | 14310.8 | 574.2 | 233.1 | 1124 | < 1% | 589.6 | 238.5 | 1097 | 1.58% |
|
83.3 | 33.4 | 25376.4 | 1055.9 | 411.9 | 2012 | 1.41% | 1059.3 | 423.6 | 1927 | 2.79% |
|
88.9 | 33.6 | 27078.8 | 1134.6 | 446.3 | 2119 | 1.47% | 1141.6 | 456.8 | 2078 | 3.01% |
[1] |
Sylvain Sorin, Cheng Wan. Finite composite games: Equilibria and dynamics. Journal of Dynamics & Games, 2016, 3 (1) : 101-120. doi: 10.3934/jdg.2016005 |
[2] |
L. Bakker. Semiconjugacy of quasiperiodic flows and finite index subgroups of multiplier groups. Conference Publications, 2005, 2005 (Special) : 60-69. doi: 10.3934/proc.2005.2005.60 |
[3] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[4] |
Keisuke Hakuta, Hisayoshi Sato, Tsuyoshi Takagi. On tameness of Matsumoto-Imai central maps in three variables over the finite field $\mathbb F_2$. Advances in Mathematics of Communications, 2016, 10 (2) : 221-228. doi: 10.3934/amc.2016002 |
[5] |
Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644 |
[6] |
Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems & Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947 |
[7] |
Pavel Krejčí, Elisabetta Rocca, Jürgen Sprekels. Phase separation in a gravity field. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 391-407. doi: 10.3934/dcdss.2011.4.391 |
[8] |
Marco Castrillón López, Mark J. Gotay. Covariantizing classical field theories. Journal of Geometric Mechanics, 2011, 3 (4) : 487-506. doi: 10.3934/jgm.2011.3.487 |
[9] |
Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3029-3052. doi: 10.3934/dcdsb.2016086 |
[10] |
Sophie Guillaume. Evolution equations governed by the subdifferential of a convex composite function in finite dimensional spaces. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 23-52. doi: 10.3934/dcds.1996.2.23 |
[11] |
Franz W. Kamber and Peter W. Michor. The flow completion of a manifold with vector field. Electronic Research Announcements, 2000, 6: 95-97. |
[12] |
Peijun Li, Yuliang Wang. Near-field imaging of obstacles. Inverse Problems & Imaging, 2015, 9 (1) : 189-210. doi: 10.3934/ipi.2015.9.189 |
[13] |
Xinfu Chen, G. Caginalp, Christof Eck. A rapidly converging phase field model. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1017-1034. doi: 10.3934/dcds.2006.15.1017 |
[14] |
Honghu Liu. Phase transitions of a phase field model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883 |
[15] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[16] |
Maciek Korzec, Andreas Münch, Endre Süli, Barbara Wagner. Anisotropy in wavelet-based phase field models. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1167-1187. doi: 10.3934/dcdsb.2016.21.1167 |
[17] |
Valery Imaikin, Alexander Komech, Herbert Spohn. Scattering theory for a particle coupled to a scalar field. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 387-396. doi: 10.3934/dcds.2004.10.387 |
[18] |
Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004 |
[19] |
Giuseppe Alì, John K. Hunter. Orientation waves in a director field with rotational inertia. Kinetic & Related Models, 2009, 2 (1) : 1-37. doi: 10.3934/krm.2009.2.1 |
[20] |
Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta. Long time average of mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 279-301. doi: 10.3934/nhm.2012.7.279 |
2018 Impact Factor: 0.545
Tools
Metrics
Other articles
by authors
[Back to Top]