August & September  2019, 12(4&5): 1281-1296. doi: 10.3934/dcdss.2019088

Research on the matching algorithm for heterologous image after deformation in the same scene

1. 

Qujing Power Supply Bureau, Yunnan Power Grid Co., Ltd., Qujing 655600, China

2. 

Department of Mathematics, Texas Christian University, Fort Worth, TX; 76129, United States

* Corresponding author: Xiaohong Zhu

Received  August 2017 Revised  January 2018 Published  November 2018

The existing contour matching algorithm is difficult to deal with the local contour matching problem of the heterologous image in same scene, and the different shooting angles or non approximate transformation will cause some deformation. In this regard, this paper proposes a matching algorithm based on image segmentation. According to the characteristics of the image, the idea of extracting the outline by first image segmentation and then extracting the contour is used to extract the coarse contour. the feature space based on mean gray, gray variance and entropy is constructed, to represent the characteristics of different material object in the image; then the initial clustering number and clustering center optimized by the ant colony algorithm is used to make fuzzy clustering of the image feature space; Canny operator is used for the edge detection, so the coarse contour images is obtained. The PNP algorithm is used to combine the same name points obtained from the initial matching to calculate the angle transformation parameters between the two images. By inverse operation, the matching contour in the two images is corrected to the same view. The experimental results show that the proposed method can effectively improve the precision of the segmentation and the matching precision of the heterogenous image.

Citation: Xiaohong Zhu, Zili Yang, Tabharit Zoubir. Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1296. doi: 10.3934/dcdss.2019088
References:
[1]

Wei Gao and Weifan Wang, New isolated toughness condition for fractional (g, f, n)-critical graphs, Colloquium Mathematicum, 147 (2017), 55-65. doi: 10.4064/cm6713-8-2016. Google Scholar

[2]

Q. HeH. LiM. JinH. Duan and Q. Zhang, New necessary and sufficient condition and algorithm for directed hamiltonian graph based on boolean determinant theory, Journal of Discrete Mathematical Sciences and Cryptography, 20 (2017), 725-745. doi: 10.1080/09720529.2016.1226618. Google Scholar

[3]

S. HuJ. HanX. Wei and Z. Chen, A multi-hop heterogeneous cluster-based optimization algorithm for wireless sensor networks, Wireless Networks, 21 (2015), 57-65. Google Scholar

[4]

S. K. and A. M., A power allocation algorithm for multi-tier cellular networks with heterogeneous qos and imperfect channel considerations, IEEE Transactions on Wireless Communications, 99 (2017), 1-1.Google Scholar

[5]

J. LópezR. SantosX. R. Fdez-Vidal and X. M. Pardo, Two-view line matching algorithm based on context and appearance in low-textured images, Pattern Recognition, 48 (2015), 2164-2184. Google Scholar

[6]

Y. MaedaD. Miyazaki and S. Maekawa, Volumetric aerial three-dimensional display based on heterogeneous imaging and image plane scanning, Applied Optics, 54 (2015), 4109-4115. Google Scholar

[7]

A. N. and T. A., Multithreaded maximum flow based optimal replica selection algorithm for heterogeneous storage architectures, IEEE Transactions on Computers, 5 (2016), 1543-1557.Google Scholar

[8]

J. P. P. NunesB. Bijeljic and M. J. Blunt, Time-of-flight distributions and breakthrough curves in heterogeneous porous media using a pore-scale streamline tracing algorithm, Transport in Porous Media, 109 (2015), 317-336. doi: 10.1007/s11242-015-0520-y. Google Scholar

[9]

P. Paulraja and S. Kumar, Edge disjoint hamilton cycles in knodel graphs. discrete mathematics and theoretical computer science, Discrete Mathematics & Theoretical Computer Science, 17 (2016), 263-284. Google Scholar

[10]

S. PengQ. HuY. Chen and J. Dang, Improved support vector machine algorithm for heterogeneous data, Pattern Recognition, 48 (2015), 2072-2083. Google Scholar

[11]

S. RadickeJ. U. HahnQ. Wang and C. Grecos, A parallel hevc intra prediction algorithm for heterogeneous cpu+gpu platforms, IEEE Transactions on Broadcasting, 62 (2016), 103-119. Google Scholar

[12]

R. Sahin and L. Peide, Some approaches to multi criteria decision making based on exponential operations of simplified neutrosophic numbers, Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 32 (2017), 2083-2099. Google Scholar

[13]

Y. T. Z. and Z. Q. R., An image segmentation method of digital image matting based on self-adaptive feature weighting, Bulletin of Science and Technology, 180-183.Google Scholar

[14]

Q. W., B. T. Z., B. B. X. and et al, A method of real-time picture tracking and mapping based on surf algorithm and ransac algorithm, Computer Simulation, 76 (2016), 268-272.Google Scholar

[15]

H. D. WanY. F. Lu and T. Zhang, An image quality assessment method using human visual characteristics, Journal of China Academy of Electronics and Information Technology, 6 (2015), 567-573. Google Scholar

[16]

J. WuC. YuenB. ChengY. YangM. Wang and J. Chen, Bandwidth-efficient multipath transport protocol for quality-guaranteed real-time video over heterogeneous wireless networks, IEEE Transactions on Communications, 64 (2016), 2477-2493. Google Scholar

[17]

J. WuC. YuenN. M. Cheung and J. Chen, Delay-constrained high definition video transmission in heterogeneous wireless networks with multi-homed terminals, IEEE Transactions on Mobile Computing, 15 (2016), 641-655. Google Scholar

[18]

C. Yue, Z. Yan and W. S. G., Fast image stitching method based on sift feature vector image, Journal of Jilin University(Science Edition), 1 (2017), 116-122.Google Scholar

[19]

W. ZhaoS. WangC. Wang and X. Wu, Approximation algorithms for cell planning in heterogeneous networks, IEEE Transactions on Vehicular Technology, 66 (2017), 1561-1572. Google Scholar

show all references

References:
[1]

Wei Gao and Weifan Wang, New isolated toughness condition for fractional (g, f, n)-critical graphs, Colloquium Mathematicum, 147 (2017), 55-65. doi: 10.4064/cm6713-8-2016. Google Scholar

[2]

Q. HeH. LiM. JinH. Duan and Q. Zhang, New necessary and sufficient condition and algorithm for directed hamiltonian graph based on boolean determinant theory, Journal of Discrete Mathematical Sciences and Cryptography, 20 (2017), 725-745. doi: 10.1080/09720529.2016.1226618. Google Scholar

[3]

S. HuJ. HanX. Wei and Z. Chen, A multi-hop heterogeneous cluster-based optimization algorithm for wireless sensor networks, Wireless Networks, 21 (2015), 57-65. Google Scholar

[4]

S. K. and A. M., A power allocation algorithm for multi-tier cellular networks with heterogeneous qos and imperfect channel considerations, IEEE Transactions on Wireless Communications, 99 (2017), 1-1.Google Scholar

[5]

J. LópezR. SantosX. R. Fdez-Vidal and X. M. Pardo, Two-view line matching algorithm based on context and appearance in low-textured images, Pattern Recognition, 48 (2015), 2164-2184. Google Scholar

[6]

Y. MaedaD. Miyazaki and S. Maekawa, Volumetric aerial three-dimensional display based on heterogeneous imaging and image plane scanning, Applied Optics, 54 (2015), 4109-4115. Google Scholar

[7]

A. N. and T. A., Multithreaded maximum flow based optimal replica selection algorithm for heterogeneous storage architectures, IEEE Transactions on Computers, 5 (2016), 1543-1557.Google Scholar

[8]

J. P. P. NunesB. Bijeljic and M. J. Blunt, Time-of-flight distributions and breakthrough curves in heterogeneous porous media using a pore-scale streamline tracing algorithm, Transport in Porous Media, 109 (2015), 317-336. doi: 10.1007/s11242-015-0520-y. Google Scholar

[9]

P. Paulraja and S. Kumar, Edge disjoint hamilton cycles in knodel graphs. discrete mathematics and theoretical computer science, Discrete Mathematics & Theoretical Computer Science, 17 (2016), 263-284. Google Scholar

[10]

S. PengQ. HuY. Chen and J. Dang, Improved support vector machine algorithm for heterogeneous data, Pattern Recognition, 48 (2015), 2072-2083. Google Scholar

[11]

S. RadickeJ. U. HahnQ. Wang and C. Grecos, A parallel hevc intra prediction algorithm for heterogeneous cpu+gpu platforms, IEEE Transactions on Broadcasting, 62 (2016), 103-119. Google Scholar

[12]

R. Sahin and L. Peide, Some approaches to multi criteria decision making based on exponential operations of simplified neutrosophic numbers, Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 32 (2017), 2083-2099. Google Scholar

[13]

Y. T. Z. and Z. Q. R., An image segmentation method of digital image matting based on self-adaptive feature weighting, Bulletin of Science and Technology, 180-183.Google Scholar

[14]

Q. W., B. T. Z., B. B. X. and et al, A method of real-time picture tracking and mapping based on surf algorithm and ransac algorithm, Computer Simulation, 76 (2016), 268-272.Google Scholar

[15]

H. D. WanY. F. Lu and T. Zhang, An image quality assessment method using human visual characteristics, Journal of China Academy of Electronics and Information Technology, 6 (2015), 567-573. Google Scholar

[16]

J. WuC. YuenB. ChengY. YangM. Wang and J. Chen, Bandwidth-efficient multipath transport protocol for quality-guaranteed real-time video over heterogeneous wireless networks, IEEE Transactions on Communications, 64 (2016), 2477-2493. Google Scholar

[17]

J. WuC. YuenN. M. Cheung and J. Chen, Delay-constrained high definition video transmission in heterogeneous wireless networks with multi-homed terminals, IEEE Transactions on Mobile Computing, 15 (2016), 641-655. Google Scholar

[18]

C. Yue, Z. Yan and W. S. G., Fast image stitching method based on sift feature vector image, Journal of Jilin University(Science Edition), 1 (2017), 116-122.Google Scholar

[19]

W. ZhaoS. WangC. Wang and X. Wu, Approximation algorithms for cell planning in heterogeneous networks, IEEE Transactions on Vehicular Technology, 66 (2017), 1561-1572. Google Scholar

Figure 1.  standard test images
Figure 2.  two visible light images to be matched
Figure 3.  segmentation results of visible light images
Figure 4.  the coarse outline of a visible light image
Figure 5.  matching results between visible light images
Table 1.  filtering results using different approximate weights
Image$\sigma/$PSNRw$_{1}$, (x, y)w$_{2}$, (x, y)w$_{3}$, (x, y)w$_{4}$, (x, y)
Ba0.05/23.2029.5425.8530.2526.58
0.20/18.5427.1424.1527.2524.25
0.30/13.5422.8521.5822.8721.52
Wo0.05/26.3221.0221.5829.2526.80
0.20/21.5220.3620.3627.5224.14
0.30/15.2516.3519.6522.6921.58
Le0.05/23.6232.0232.5832.5832.58
0.10/18.5229.2529.6529.6529.69
0.30/13.3225.1525.6924.9624.25
Bo0.05/22.5229.6330.2530.2530.25
0.10/18.2527.6227.5227.6527.55
0.30/12.5823.6523.6922.3623.69
Image$\sigma/$PSNRw$_{1}$, (x, y)w$_{2}$, (x, y)w$_{3}$, (x, y)w$_{4}$, (x, y)
Ba0.05/23.2029.5425.8530.2526.58
0.20/18.5427.1424.1527.2524.25
0.30/13.5422.8521.5822.8721.52
Wo0.05/26.3221.0221.5829.2526.80
0.20/21.5220.3620.3627.5224.14
0.30/15.2516.3519.6522.6921.58
Le0.05/23.6232.0232.5832.5832.58
0.10/18.5229.2529.6529.6529.69
0.30/13.3225.1525.6924.9624.25
Bo0.05/22.5229.6330.2530.2530.25
0.10/18.2527.6227.5227.6527.55
0.30/12.5823.6523.6922.3623.69
[1]

Kenji Nakanishi. Modified wave operators for the Hartree equation with data, image and convergence in the same space. Communications on Pure & Applied Analysis, 2002, 1 (2) : 237-252. doi: 10.3934/cpaa.2002.1.237

[2]

Angel Angelov, Marcus Wagner. Multimodal image registration by elastic matching of edge sketches via optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 567-590. doi: 10.3934/jimo.2014.10.567

[3]

Pengwen Chen, Changfeng Gui. Alpha divergences based mass transport models for image matching problems. Inverse Problems & Imaging, 2011, 5 (3) : 551-590. doi: 10.3934/ipi.2011.5.551

[4]

Luciano Pandolfi. Traction, deformation and velocity of deformation in a viscoelastic string. Evolution Equations & Control Theory, 2013, 2 (3) : 471-493. doi: 10.3934/eect.2013.2.471

[5]

Jean-Claude Zambrini. Stochastic deformation of classical mechanics. Conference Publications, 2013, 2013 (special) : 807-813. doi: 10.3934/proc.2013.2013.807

[6]

Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62

[7]

Rolf Ryham, Chun Liu, Ludmil Zikatanov. Mathematical models for the deformation of electrolyte droplets. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 649-661. doi: 10.3934/dcdsb.2007.8.649

[8]

Núria Fagella, Christian Henriksen. Deformation of entire functions with Baker domains. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 379-394. doi: 10.3934/dcds.2006.15.379

[9]

Eriko Hironaka, Sarah Koch. A disconnected deformation space of rational maps. Journal of Modern Dynamics, 2017, 11: 409-423. doi: 10.3934/jmd.2017016

[10]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[11]

Tuan Phung-Duc, Ken’ichi Kawanishi. Multiserver retrial queues with after-call work. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 639-656. doi: 10.3934/naco.2011.1.639

[12]

Danilo Coelho, David Pérez-Castrillo. On Marilda Sotomayor's extraordinary contribution to matching theory. Journal of Dynamics & Games, 2015, 2 (3&4) : 201-206. doi: 10.3934/jdg.2015001

[13]

J. M. Mazón, Julio D. Rossi, J. Toledo. Optimal matching problems with costs given by Finsler distances. Communications on Pure & Applied Analysis, 2015, 14 (1) : 229-244. doi: 10.3934/cpaa.2015.14.229

[14]

Paola B. Manasero. Equivalences between two matching models: Stability. Journal of Dynamics & Games, 2018, 5 (3) : 203-221. doi: 10.3934/jdg.2018013

[15]

Luigi Ambrosio, Federico Glaudo, Dario Trevisan. On the optimal map in the $ 2 $-dimensional random matching problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7291-7308. doi: 10.3934/dcds.2019304

[16]

Jonathan D. Touboul. The hipster effect: When anti-conformists all look the same. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4379-4415. doi: 10.3934/dcdsb.2019124

[17]

Rémi Lassalle, Jean Claude Zambrini. A weak approach to the stochastic deformation of classical mechanics. Journal of Geometric Mechanics, 2016, 8 (2) : 221-233. doi: 10.3934/jgm.2016005

[18]

Patrick Foulon, Vladimir S. Matveev. Zermelo deformation of finsler metrics by killing vector fields. Electronic Research Announcements, 2018, 25: 1-7. doi: 10.3934/era.2018.25.001

[19]

Alfonso C. Casal, Jesús Ildefonso Díaz, José Manuel Vegas. Complete recuperation after the blow up time for semilinear problems. Conference Publications, 2015, 2015 (special) : 223-229. doi: 10.3934/proc.2015.0223

[20]

Julia Piantadosi, Phil Howlett, John Boland. Matching the grade correlation coefficient using a copula with maximum disorder. Journal of Industrial & Management Optimization, 2007, 3 (2) : 305-312. doi: 10.3934/jimo.2007.3.305

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (19)
  • HTML views (232)
  • Cited by (0)

Other articles
by authors

[Back to Top]