August & September  2019, 12(4&5): 1341-1354. doi: 10.3934/dcdss.2019092

Optimization algorithm for embedded Linux remote video monitoring system oriented to the internet of things (IOT)

1. 

School of Mathematics and Computer Science, Shanxi Datong University, Datong, China

2. 

Department of Computer Science, Winona State University, Winona, MN 55987, USA

* Corresponding author: Wenbo Fu

Received  August 2017 Revised  January 2018 Published  November 2018

At present, the remote video monitoring system has the problem of weak anti-interference ability and poor response of the system. Therefore, the video image is not clear. On the basis of the Internet of things (IOT), a design method of embedded Linux remote video monitoring system is proposed. The method is based on ARM+Linux development platform, the 301V USB camera of Vimicro is used to collect images, to make preprocessing, and improve the system's response. The embedded Linux operating system is used to realize the functions of data acquisition and transmission of video image. The fractal wavelet of multivariate statistical model is used to denoise the video image so as to improve the anti-interference of the system. The experimental results show that the method has strong anti-interference ability and good response to the system.

Citation: Wenbo Fu, Debnath Narayan. Optimization algorithm for embedded Linux remote video monitoring system oriented to the internet of things (IOT). Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1341-1354. doi: 10.3934/dcdss.2019092
References:
[1]

J. E. Banchs and D. L. Scher, Emerging role of digital technology and remote monitoring in the care of cardiac patients, Medical Clinics of North America, 99 (2015), 877-896.   Google Scholar

[2]

D. G. Dietlein, A method for remote monitoring of activity of honeybee colonies by sound analysis, Journal of Apicultural Research, 24 (1985), 176-183.   Google Scholar

[3]

O. FrederikJ. R. DanarajB. FleetH. GunasinghamS. Jaenicke and V. E. Hodgkinson, Remote monitoring and control of electrochemical experiments via the internet using ''intelligent agent'' software, Electroanalysis, 11 (2015), 1027-1032.   Google Scholar

[4]

F. GonzeR. M. Jungers and A. N. Trahtman, A note on a recent attempt to improve the pin-frankl bound, Behavioural Brain Research, 17 (2015), 307-308.   Google Scholar

[5]

N. J., N. F., B. S. and et al, Biometric recognition in monitoring scenarios: A survey, Artificial Intelligence Review, 515-541. Google Scholar

[6]

S. K., Z. Y., Z. G. and et al, Long-term remote monitoring of total suspended matter concentration in lake taihu using 250 m modis-aqua data, Remote Sensing of Environment, 62 (2015), 43-56. Google Scholar

[7]

L. M. KallinenR. G. HauserC. TangD. P. MelbyA. K. AlmquistW. T. Katsiyiannis and C. C. Gornick, Lead integrity alert algorithm decreases inappropriate shocks in patients who have sprint fidelis pace-sense conductor fractures., Heart Rhythm, 7 (2010), 368-377.   Google Scholar

[8]

B. KatalenichL. ShiS. LiuH. ShaoR. McduffieG. CarpioT. Thethi and V. Fonseca, Evaluation of a remote monitoring system for diabetes control, Clinical Therapeutics, 37 (2015), 1216-1225.   Google Scholar

[9]

R. KosakaY. SankaiR. TakiyaT. JikuyaT. Yamane and T. Tsutsui, Tsukuba remote monitoring system for continuous-flow artificial heart., Artificial Organs, 27 (2015), 897-906.   Google Scholar

[10]

N. KumarJ. H. Lee and J. J. P. C. Rodrigues, Intelligent mobile video surveillance system as a bayesian coalition game in vehicular sensor networks: Learning automata approach, IEEE Transactions on Intelligent Transportation Systems, 16 (2015), 1148-1161.   Google Scholar

[11]

X. L., X. H. K., H. X. and et al, Remote video monitoring optimization method research based on internet of things, Environmental Earth Sciences, 72 (2015), 226-228. Google Scholar

[12]

T. Lewalter and T. Brodherr, Remote monitoring of implantable cardioverter-defibrillators: Financial impact for providers and benefits to patients, European Heart Journal, 36 (2015), 143.   Google Scholar

[13]

N. Liu, W. Chen, Q. Wang and Y. Lang, Remote video monitoring and early warning system based on android platform, Journal of Jilin University, 283-288. Google Scholar

[14]

B. M. A., L. S. R., C. M. J. and et al, Eight-week remote monitoring using a freely worn device reveals unstable gait patterns in older fallers, IEEE Transactions on Biomedical Engineering, 27 (2015), 2588-2594. Google Scholar

[15]

N. ParthibanA. EstermanR. MahajanD. J. TwomeyR. K. PathakD.H. LauK. C. RobertsthomsonG. D. YoungP. Sanders and A. N. Ganesan, Remote monitoring of implantable cardioverter-defibrillators: A systematic review and meta-analysis of clinical outcomes., Pacing Clin Electrophysiol, 27 (2015), 2591-2600.   Google Scholar

[16]

K. Q. and G. B., Remote virtual supervision system, European Journal of Soil Science, 79-89. Google Scholar

[17]

E. S. RamírezD. Luis and E. Perez, Web monitoring module for video surveillance system xilema suria, Bulletin of the American Meteorological Society, 91 (2015), 1699-1701.   Google Scholar

[18]

H. U. Rong, X. Q. Luo and H. E. Shang-Ping, Simulation study on the human motion characteristics monitoring of remote video image, Computer Simulation, 298-301. Google Scholar

[19]

F. H. Tsai, An investigation of gender differences in a game-based learning environment with different game modes., Eurasia Journal of Mathematics Science & Technology Education, 13 (2017), 3209-3226.   Google Scholar

[20]

N. VarmaJ. P. PicciniJ. SnellA. FischerN. Dalal and S. Mittal, Relationship between level of adherence to automatic wireless remote monitoring and survival in pacemaker and defibrillator patients, Journal of the American College of Cardiology, 65 (2015), 2601-2610.   Google Scholar

[21]

J. WangB. TianJ. LuD. MacdonaldJ. Wang and D. Luo, Renewable-reagent enzyme inhibition sensor for remote monitoring of cyanide, Electroanalysis, 10 (2015), 1034-1037.   Google Scholar

[22]

Y. G. Wang, The effect of reservoir projects on the household income of indigenous people an empirical analysis based on gangkouwan reservoir project, Journal of Interdisciplinary Mathematics, 20 (2017), 195-207.   Google Scholar

[23]

L. I. Xiao-Hui, Research on the open architecture of iot, Journal of China Academy of Electronics & Information Technology, 478-482 Google Scholar

[24]

H. YangX. Liu and L. Zhang, Observer-based tracking control using unmeasurable premise variables for time-delay switched fuzzy systems, Journal of Intelligent & Fuzzy Systems, 32 (2017), 3973-3985.   Google Scholar

show all references

References:
[1]

J. E. Banchs and D. L. Scher, Emerging role of digital technology and remote monitoring in the care of cardiac patients, Medical Clinics of North America, 99 (2015), 877-896.   Google Scholar

[2]

D. G. Dietlein, A method for remote monitoring of activity of honeybee colonies by sound analysis, Journal of Apicultural Research, 24 (1985), 176-183.   Google Scholar

[3]

O. FrederikJ. R. DanarajB. FleetH. GunasinghamS. Jaenicke and V. E. Hodgkinson, Remote monitoring and control of electrochemical experiments via the internet using ''intelligent agent'' software, Electroanalysis, 11 (2015), 1027-1032.   Google Scholar

[4]

F. GonzeR. M. Jungers and A. N. Trahtman, A note on a recent attempt to improve the pin-frankl bound, Behavioural Brain Research, 17 (2015), 307-308.   Google Scholar

[5]

N. J., N. F., B. S. and et al, Biometric recognition in monitoring scenarios: A survey, Artificial Intelligence Review, 515-541. Google Scholar

[6]

S. K., Z. Y., Z. G. and et al, Long-term remote monitoring of total suspended matter concentration in lake taihu using 250 m modis-aqua data, Remote Sensing of Environment, 62 (2015), 43-56. Google Scholar

[7]

L. M. KallinenR. G. HauserC. TangD. P. MelbyA. K. AlmquistW. T. Katsiyiannis and C. C. Gornick, Lead integrity alert algorithm decreases inappropriate shocks in patients who have sprint fidelis pace-sense conductor fractures., Heart Rhythm, 7 (2010), 368-377.   Google Scholar

[8]

B. KatalenichL. ShiS. LiuH. ShaoR. McduffieG. CarpioT. Thethi and V. Fonseca, Evaluation of a remote monitoring system for diabetes control, Clinical Therapeutics, 37 (2015), 1216-1225.   Google Scholar

[9]

R. KosakaY. SankaiR. TakiyaT. JikuyaT. Yamane and T. Tsutsui, Tsukuba remote monitoring system for continuous-flow artificial heart., Artificial Organs, 27 (2015), 897-906.   Google Scholar

[10]

N. KumarJ. H. Lee and J. J. P. C. Rodrigues, Intelligent mobile video surveillance system as a bayesian coalition game in vehicular sensor networks: Learning automata approach, IEEE Transactions on Intelligent Transportation Systems, 16 (2015), 1148-1161.   Google Scholar

[11]

X. L., X. H. K., H. X. and et al, Remote video monitoring optimization method research based on internet of things, Environmental Earth Sciences, 72 (2015), 226-228. Google Scholar

[12]

T. Lewalter and T. Brodherr, Remote monitoring of implantable cardioverter-defibrillators: Financial impact for providers and benefits to patients, European Heart Journal, 36 (2015), 143.   Google Scholar

[13]

N. Liu, W. Chen, Q. Wang and Y. Lang, Remote video monitoring and early warning system based on android platform, Journal of Jilin University, 283-288. Google Scholar

[14]

B. M. A., L. S. R., C. M. J. and et al, Eight-week remote monitoring using a freely worn device reveals unstable gait patterns in older fallers, IEEE Transactions on Biomedical Engineering, 27 (2015), 2588-2594. Google Scholar

[15]

N. ParthibanA. EstermanR. MahajanD. J. TwomeyR. K. PathakD.H. LauK. C. RobertsthomsonG. D. YoungP. Sanders and A. N. Ganesan, Remote monitoring of implantable cardioverter-defibrillators: A systematic review and meta-analysis of clinical outcomes., Pacing Clin Electrophysiol, 27 (2015), 2591-2600.   Google Scholar

[16]

K. Q. and G. B., Remote virtual supervision system, European Journal of Soil Science, 79-89. Google Scholar

[17]

E. S. RamírezD. Luis and E. Perez, Web monitoring module for video surveillance system xilema suria, Bulletin of the American Meteorological Society, 91 (2015), 1699-1701.   Google Scholar

[18]

H. U. Rong, X. Q. Luo and H. E. Shang-Ping, Simulation study on the human motion characteristics monitoring of remote video image, Computer Simulation, 298-301. Google Scholar

[19]

F. H. Tsai, An investigation of gender differences in a game-based learning environment with different game modes., Eurasia Journal of Mathematics Science & Technology Education, 13 (2017), 3209-3226.   Google Scholar

[20]

N. VarmaJ. P. PicciniJ. SnellA. FischerN. Dalal and S. Mittal, Relationship between level of adherence to automatic wireless remote monitoring and survival in pacemaker and defibrillator patients, Journal of the American College of Cardiology, 65 (2015), 2601-2610.   Google Scholar

[21]

J. WangB. TianJ. LuD. MacdonaldJ. Wang and D. Luo, Renewable-reagent enzyme inhibition sensor for remote monitoring of cyanide, Electroanalysis, 10 (2015), 1034-1037.   Google Scholar

[22]

Y. G. Wang, The effect of reservoir projects on the household income of indigenous people an empirical analysis based on gangkouwan reservoir project, Journal of Interdisciplinary Mathematics, 20 (2017), 195-207.   Google Scholar

[23]

L. I. Xiao-Hui, Research on the open architecture of iot, Journal of China Academy of Electronics & Information Technology, 478-482 Google Scholar

[24]

H. YangX. Liu and L. Zhang, Observer-based tracking control using unmeasurable premise variables for time-delay switched fuzzy systems, Journal of Intelligent & Fuzzy Systems, 32 (2017), 3973-3985.   Google Scholar

Figure 1.  the overall architecture of embedded Linux remote video monitoring system
Figure 2.  The framework of Linux device driver
Figure 3.  hierarchical structure of USB subsystem
Figure 4.  flow chart of video capture
Figure 5.  hardware development platform
Figure 6.  test results of three different methods
Figure 7.  system monitoring images
Figure 8.  the transmission of data by three different methods
[1]

Editorial Office. Retraction: Xiaohong Zhu, Lihe Zhou, Zili Yang and Joyati Debnath, A new text information extraction algorithm of video image under multimedia environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1265-1265. doi: 10.3934/dcdss.2019087

[2]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[3]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[4]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[5]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[6]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[7]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[8]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[9]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[10]

Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177

[11]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[14]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[15]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[16]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[17]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[18]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[19]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[20]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (108)
  • HTML views (490)
  • Cited by (2)

Other articles
by authors

[Back to Top]